Realization of the Haldane Chern insulator in a moiré lattice

The Chern insulator displays a quantized Hall effect without Landau levels. Theoretically, this state can be realized by engineering complex next-nearest-neighbour hopping in a honeycomb lattice—the so-called Haldane model. Despite its profound effect on the field of topological physics and recent i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2024-02, Vol.20 (2), p.275-280
Hauptverfasser: Zhao, Wenjin, Kang, Kaifei, Zhang, Yichi, Knüppel, Patrick, Tao, Zui, Li, Lizhong, Tschirhart, Charles L., Redekop, Evgeny, Watanabe, Kenji, Taniguchi, Takashi, Young, Andrea F., Shan, Jie, Mak, Kin Fai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 275
container_title Nature physics
container_volume 20
creator Zhao, Wenjin
Kang, Kaifei
Zhang, Yichi
Knüppel, Patrick
Tao, Zui
Li, Lizhong
Tschirhart, Charles L.
Redekop, Evgeny
Watanabe, Kenji
Taniguchi, Takashi
Young, Andrea F.
Shan, Jie
Mak, Kin Fai
description The Chern insulator displays a quantized Hall effect without Landau levels. Theoretically, this state can be realized by engineering complex next-nearest-neighbour hopping in a honeycomb lattice—the so-called Haldane model. Despite its profound effect on the field of topological physics and recent implementation in cold-atom experiments, the Haldane model has not yet been realized in solid-state materials. Here we report the experimental realization of a Haldane Chern insulator in AB-stacked MoTe 2 /WSe 2 moiré bilayers, which form a honeycomb moiré lattice with two sublattices residing in different layers. We show that the moiré bilayer filled with two holes per unit cell is a quantum spin Hall insulator with a tunable charge gap. Under a small out-of-plane magnetic field, it becomes a Chern insulator with a finite Chern number because the Zeeman field splits the quantum spin Hall insulator into two halves with opposite valleys: one with a positive and the other with a negative moiré band gap. We also demonstrate experimental evidence of the Haldane model at zero external magnetic field by proximity coupling the moiré bilayer to a ferromagnetic insulator. The Haldane model is a paradigmatic example of topological behaviour but has not previously been implemented in condensed-matter experiments. Now a moiré bilayer is shown to realize this model with the accompanying quantized transport response.
doi_str_mv 10.1038/s41567-023-02284-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926320819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926320819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5dd14422edb733f4d762665a48d49d22591e8d6cb91838162fcdfe33957fcca83</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgejS5N5PJbAQpaoWCILoOaX7slOlMTaYLfSOfwxczOqI7F5d7uJxzLnyEnHJ2zhmqiyR4KauCAeYBJQq2Rya8EmUBQvH9X13hITlKac2YAMlxQi4fvGmbNzM0fUf7QIeVp3PTOtN5Olv52NGmS7vWDH3Mihq66Zv48U7zZWisPyYHwbTJn_zsKXm6uX6czYvF_e3d7GpRWJQ4FKVzXAgA75YVYhCukiBlaYRyonYAZc29ctIua65QcQnBuuAR67IK1hqFU3I29m5j_7LzadDrfhe7_FJDDRKBKV5nF4wuG_uUog96G5uNia-aM_3FSY-cdOakvzlplkM4hlI2d88-_lX_k_oExRhqRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926320819</pqid></control><display><type>article</type><title>Realization of the Haldane Chern insulator in a moiré lattice</title><source>SpringerLink Journals</source><source>Nature</source><creator>Zhao, Wenjin ; Kang, Kaifei ; Zhang, Yichi ; Knüppel, Patrick ; Tao, Zui ; Li, Lizhong ; Tschirhart, Charles L. ; Redekop, Evgeny ; Watanabe, Kenji ; Taniguchi, Takashi ; Young, Andrea F. ; Shan, Jie ; Mak, Kin Fai</creator><creatorcontrib>Zhao, Wenjin ; Kang, Kaifei ; Zhang, Yichi ; Knüppel, Patrick ; Tao, Zui ; Li, Lizhong ; Tschirhart, Charles L. ; Redekop, Evgeny ; Watanabe, Kenji ; Taniguchi, Takashi ; Young, Andrea F. ; Shan, Jie ; Mak, Kin Fai</creatorcontrib><description>The Chern insulator displays a quantized Hall effect without Landau levels. Theoretically, this state can be realized by engineering complex next-nearest-neighbour hopping in a honeycomb lattice—the so-called Haldane model. Despite its profound effect on the field of topological physics and recent implementation in cold-atom experiments, the Haldane model has not yet been realized in solid-state materials. Here we report the experimental realization of a Haldane Chern insulator in AB-stacked MoTe 2 /WSe 2 moiré bilayers, which form a honeycomb moiré lattice with two sublattices residing in different layers. We show that the moiré bilayer filled with two holes per unit cell is a quantum spin Hall insulator with a tunable charge gap. Under a small out-of-plane magnetic field, it becomes a Chern insulator with a finite Chern number because the Zeeman field splits the quantum spin Hall insulator into two halves with opposite valleys: one with a positive and the other with a negative moiré band gap. We also demonstrate experimental evidence of the Haldane model at zero external magnetic field by proximity coupling the moiré bilayer to a ferromagnetic insulator. The Haldane model is a paradigmatic example of topological behaviour but has not previously been implemented in condensed-matter experiments. Now a moiré bilayer is shown to realize this model with the accompanying quantized transport response.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02284-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1018 ; 639/766/119/2792 ; 639/766/483/3926 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Ferromagnetism ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum Hall effect ; Theoretical ; Topology ; Unit cell</subject><ispartof>Nature physics, 2024-02, Vol.20 (2), p.275-280</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5dd14422edb733f4d762665a48d49d22591e8d6cb91838162fcdfe33957fcca83</citedby><cites>FETCH-LOGICAL-c363t-5dd14422edb733f4d762665a48d49d22591e8d6cb91838162fcdfe33957fcca83</cites><orcidid>0000-0002-1467-3105 ; 0000-0002-8906-3950 ; 0000-0003-3701-8119 ; 0000-0003-0016-5684 ; 0000-0003-1270-9386 ; 0000-0002-5768-199X ; 0000-0002-6193-3440 ; 0000-0001-6258-0803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-023-02284-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-023-02284-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Wenjin</creatorcontrib><creatorcontrib>Kang, Kaifei</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Knüppel, Patrick</creatorcontrib><creatorcontrib>Tao, Zui</creatorcontrib><creatorcontrib>Li, Lizhong</creatorcontrib><creatorcontrib>Tschirhart, Charles L.</creatorcontrib><creatorcontrib>Redekop, Evgeny</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Young, Andrea F.</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><title>Realization of the Haldane Chern insulator in a moiré lattice</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The Chern insulator displays a quantized Hall effect without Landau levels. Theoretically, this state can be realized by engineering complex next-nearest-neighbour hopping in a honeycomb lattice—the so-called Haldane model. Despite its profound effect on the field of topological physics and recent implementation in cold-atom experiments, the Haldane model has not yet been realized in solid-state materials. Here we report the experimental realization of a Haldane Chern insulator in AB-stacked MoTe 2 /WSe 2 moiré bilayers, which form a honeycomb moiré lattice with two sublattices residing in different layers. We show that the moiré bilayer filled with two holes per unit cell is a quantum spin Hall insulator with a tunable charge gap. Under a small out-of-plane magnetic field, it becomes a Chern insulator with a finite Chern number because the Zeeman field splits the quantum spin Hall insulator into two halves with opposite valleys: one with a positive and the other with a negative moiré band gap. We also demonstrate experimental evidence of the Haldane model at zero external magnetic field by proximity coupling the moiré bilayer to a ferromagnetic insulator. The Haldane model is a paradigmatic example of topological behaviour but has not previously been implemented in condensed-matter experiments. Now a moiré bilayer is shown to realize this model with the accompanying quantized transport response.</description><subject>639/766/119/1000/1018</subject><subject>639/766/119/2792</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Ferromagnetism</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Hall effect</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Unit cell</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgejS5N5PJbAQpaoWCILoOaX7slOlMTaYLfSOfwxczOqI7F5d7uJxzLnyEnHJ2zhmqiyR4KauCAeYBJQq2Rya8EmUBQvH9X13hITlKac2YAMlxQi4fvGmbNzM0fUf7QIeVp3PTOtN5Olv52NGmS7vWDH3Mihq66Zv48U7zZWisPyYHwbTJn_zsKXm6uX6czYvF_e3d7GpRWJQ4FKVzXAgA75YVYhCukiBlaYRyonYAZc29ctIua65QcQnBuuAR67IK1hqFU3I29m5j_7LzadDrfhe7_FJDDRKBKV5nF4wuG_uUog96G5uNia-aM_3FSY-cdOakvzlplkM4hlI2d88-_lX_k_oExRhqRQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhao, Wenjin</creator><creator>Kang, Kaifei</creator><creator>Zhang, Yichi</creator><creator>Knüppel, Patrick</creator><creator>Tao, Zui</creator><creator>Li, Lizhong</creator><creator>Tschirhart, Charles L.</creator><creator>Redekop, Evgeny</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Young, Andrea F.</creator><creator>Shan, Jie</creator><creator>Mak, Kin Fai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8906-3950</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0016-5684</orcidid><orcidid>https://orcid.org/0000-0003-1270-9386</orcidid><orcidid>https://orcid.org/0000-0002-5768-199X</orcidid><orcidid>https://orcid.org/0000-0002-6193-3440</orcidid><orcidid>https://orcid.org/0000-0001-6258-0803</orcidid></search><sort><creationdate>20240201</creationdate><title>Realization of the Haldane Chern insulator in a moiré lattice</title><author>Zhao, Wenjin ; Kang, Kaifei ; Zhang, Yichi ; Knüppel, Patrick ; Tao, Zui ; Li, Lizhong ; Tschirhart, Charles L. ; Redekop, Evgeny ; Watanabe, Kenji ; Taniguchi, Takashi ; Young, Andrea F. ; Shan, Jie ; Mak, Kin Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5dd14422edb733f4d762665a48d49d22591e8d6cb91838162fcdfe33957fcca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/119/1000/1018</topic><topic>639/766/119/2792</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Ferromagnetism</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Hall effect</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenjin</creatorcontrib><creatorcontrib>Kang, Kaifei</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Knüppel, Patrick</creatorcontrib><creatorcontrib>Tao, Zui</creatorcontrib><creatorcontrib>Li, Lizhong</creatorcontrib><creatorcontrib>Tschirhart, Charles L.</creatorcontrib><creatorcontrib>Redekop, Evgeny</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Young, Andrea F.</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wenjin</au><au>Kang, Kaifei</au><au>Zhang, Yichi</au><au>Knüppel, Patrick</au><au>Tao, Zui</au><au>Li, Lizhong</au><au>Tschirhart, Charles L.</au><au>Redekop, Evgeny</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Young, Andrea F.</au><au>Shan, Jie</au><au>Mak, Kin Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of the Haldane Chern insulator in a moiré lattice</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>275</spage><epage>280</epage><pages>275-280</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The Chern insulator displays a quantized Hall effect without Landau levels. Theoretically, this state can be realized by engineering complex next-nearest-neighbour hopping in a honeycomb lattice—the so-called Haldane model. Despite its profound effect on the field of topological physics and recent implementation in cold-atom experiments, the Haldane model has not yet been realized in solid-state materials. Here we report the experimental realization of a Haldane Chern insulator in AB-stacked MoTe 2 /WSe 2 moiré bilayers, which form a honeycomb moiré lattice with two sublattices residing in different layers. We show that the moiré bilayer filled with two holes per unit cell is a quantum spin Hall insulator with a tunable charge gap. Under a small out-of-plane magnetic field, it becomes a Chern insulator with a finite Chern number because the Zeeman field splits the quantum spin Hall insulator into two halves with opposite valleys: one with a positive and the other with a negative moiré band gap. We also demonstrate experimental evidence of the Haldane model at zero external magnetic field by proximity coupling the moiré bilayer to a ferromagnetic insulator. The Haldane model is a paradigmatic example of topological behaviour but has not previously been implemented in condensed-matter experiments. Now a moiré bilayer is shown to realize this model with the accompanying quantized transport response.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02284-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8906-3950</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0016-5684</orcidid><orcidid>https://orcid.org/0000-0003-1270-9386</orcidid><orcidid>https://orcid.org/0000-0002-5768-199X</orcidid><orcidid>https://orcid.org/0000-0002-6193-3440</orcidid><orcidid>https://orcid.org/0000-0001-6258-0803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2024-02, Vol.20 (2), p.275-280
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2926320819
source SpringerLink Journals; Nature
subjects 639/766/119/1000/1018
639/766/119/2792
639/766/483/3926
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Ferromagnetism
Magnetic fields
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum Hall effect
Theoretical
Topology
Unit cell
title Realization of the Haldane Chern insulator in a moiré lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20the%20Haldane%20Chern%20insulator%20in%20a%20moir%C3%A9%20lattice&rft.jtitle=Nature%20physics&rft.au=Zhao,%20Wenjin&rft.date=2024-02-01&rft.volume=20&rft.issue=2&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02284-0&rft_dat=%3Cproquest_cross%3E2926320819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926320819&rft_id=info:pmid/&rfr_iscdi=true