MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification
Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by mu...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2024-02, Vol.28 (2), p.328-331 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 2 |
container_start_page | 328 |
container_title | IEEE communications letters |
container_volume | 28 |
creator | Triaridis, Konstantinos Doumanidis, Constantine Chatzidiamantis, Nestor D. Karagiannidis, George K. |
description | Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values. |
doi_str_mv | 10.1109/LCOMM.2023.3342604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2926269167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10356142</ieee_id><sourcerecordid>2926269167</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-130fb1355b7c6d55bfd38d0fa6543a038e1bbda412c1bfafca0fca093ec424e03</originalsourceid><addsrcrecordid>eNotTstOwzAQtBBIlMIPIA6WOLvs-pWEWxTxqJTQSzlHjmMLV2lT8hDi7zGUw87MakazS8gtwgoRsoey2FTVigMXKyEk1yDPyAKVShmPcB41pBlLkiy9JFfjuAOAlCtckHVVsTc3PdKcVnM3BVb1relofjwOvbEfdNt_maGl-Tz1ezMFS6M_d1H1B1p0ZhyDD_ZvvSYX3nSju_nnJXl_ftoWr6zcvKyLvGSBg5wYCvANCqWaxOo2km9F2oI3WklhQKQOm6Y1ErnFxhtvDfxOJpyVXDoQS3J_6o0ffs5unOpdPw-HeLLmGddcZ6iTmLo7pYJzrj4OYW-G7xpBKI2Six97aFg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926269167</pqid></control><display><type>article</type><title>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Triaridis, Konstantinos ; Doumanidis, Constantine ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</creator><creatorcontrib>Triaridis, Konstantinos ; Doumanidis, Constantine ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</creatorcontrib><description>Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2023.3342604</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic modulation classification ; Classification ; Communications systems ; Computer architecture ; Computer vision ; Convolutional neural networks ; cumulants ; Deep learning ; Feature extraction ; Machine learning ; Military applications ; Modulation ; Robustness ; Semantic segmentation ; Signal to noise ratio ; Task analysis ; transfer learning</subject><ispartof>IEEE communications letters, 2024-02, Vol.28 (2), p.328-331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8810-0345 ; 0009-0009-5868-9596 ; 0000-0001-6763-7629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10356142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10356142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Triaridis, Konstantinos</creatorcontrib><creatorcontrib>Doumanidis, Constantine</creatorcontrib><creatorcontrib>Chatzidiamantis, Nestor D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><title>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.</description><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Communications systems</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>cumulants</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Military applications</subject><subject>Modulation</subject><subject>Robustness</subject><subject>Semantic segmentation</subject><subject>Signal to noise ratio</subject><subject>Task analysis</subject><subject>transfer learning</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotTstOwzAQtBBIlMIPIA6WOLvs-pWEWxTxqJTQSzlHjmMLV2lT8hDi7zGUw87MakazS8gtwgoRsoey2FTVigMXKyEk1yDPyAKVShmPcB41pBlLkiy9JFfjuAOAlCtckHVVsTc3PdKcVnM3BVb1relofjwOvbEfdNt_maGl-Tz1ezMFS6M_d1H1B1p0ZhyDD_ZvvSYX3nSju_nnJXl_ftoWr6zcvKyLvGSBg5wYCvANCqWaxOo2km9F2oI3WklhQKQOm6Y1ErnFxhtvDfxOJpyVXDoQS3J_6o0ffs5unOpdPw-HeLLmGddcZ6iTmLo7pYJzrj4OYW-G7xpBKI2Six97aFg4</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Triaridis, Konstantinos</creator><creator>Doumanidis, Constantine</creator><creator>Chatzidiamantis, Nestor D.</creator><creator>Karagiannidis, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0009-0009-5868-9596</orcidid><orcidid>https://orcid.org/0000-0001-6763-7629</orcidid></search><sort><creationdate>20240201</creationdate><title>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</title><author>Triaridis, Konstantinos ; Doumanidis, Constantine ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-130fb1355b7c6d55bfd38d0fa6543a038e1bbda412c1bfafca0fca093ec424e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Communications systems</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>cumulants</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Military applications</topic><topic>Modulation</topic><topic>Robustness</topic><topic>Semantic segmentation</topic><topic>Signal to noise ratio</topic><topic>Task analysis</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triaridis, Konstantinos</creatorcontrib><creatorcontrib>Doumanidis, Constantine</creatorcontrib><creatorcontrib>Chatzidiamantis, Nestor D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Triaridis, Konstantinos</au><au>Doumanidis, Constantine</au><au>Chatzidiamantis, Nestor D.</au><au>Karagiannidis, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>328</spage><epage>331</epage><pages>328-331</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2023.3342604</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0009-0009-5868-9596</orcidid><orcidid>https://orcid.org/0000-0001-6763-7629</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2024-02, Vol.28 (2), p.328-331 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2926269167 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic modulation classification Classification Communications systems Computer architecture Computer vision Convolutional neural networks cumulants Deep learning Feature extraction Machine learning Military applications Modulation Robustness Semantic segmentation Signal to noise ratio Task analysis transfer learning |
title | MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MM-Net:%20A%20Multi-Modal%20Approach%20Toward%20Automatic%20Modulation%20Classification&rft.jtitle=IEEE%20communications%20letters&rft.au=Triaridis,%20Konstantinos&rft.date=2024-02-01&rft.volume=28&rft.issue=2&rft.spage=328&rft.epage=331&rft.pages=328-331&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2023.3342604&rft_dat=%3Cproquest_RIE%3E2926269167%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926269167&rft_id=info:pmid/&rft_ieee_id=10356142&rfr_iscdi=true |