MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification

Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-02, Vol.28 (2), p.328-331
Hauptverfasser: Triaridis, Konstantinos, Doumanidis, Constantine, Chatzidiamantis, Nestor D., Karagiannidis, George K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 2
container_start_page 328
container_title IEEE communications letters
container_volume 28
creator Triaridis, Konstantinos
Doumanidis, Constantine
Chatzidiamantis, Nestor D.
Karagiannidis, George K.
description Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.
doi_str_mv 10.1109/LCOMM.2023.3342604
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2926269167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10356142</ieee_id><sourcerecordid>2926269167</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-130fb1355b7c6d55bfd38d0fa6543a038e1bbda412c1bfafca0fca093ec424e03</originalsourceid><addsrcrecordid>eNotTstOwzAQtBBIlMIPIA6WOLvs-pWEWxTxqJTQSzlHjmMLV2lT8hDi7zGUw87MakazS8gtwgoRsoey2FTVigMXKyEk1yDPyAKVShmPcB41pBlLkiy9JFfjuAOAlCtckHVVsTc3PdKcVnM3BVb1relofjwOvbEfdNt_maGl-Tz1ezMFS6M_d1H1B1p0ZhyDD_ZvvSYX3nSju_nnJXl_ftoWr6zcvKyLvGSBg5wYCvANCqWaxOo2km9F2oI3WklhQKQOm6Y1ErnFxhtvDfxOJpyVXDoQS3J_6o0ffs5unOpdPw-HeLLmGddcZ6iTmLo7pYJzrj4OYW-G7xpBKI2Six97aFg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926269167</pqid></control><display><type>article</type><title>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Triaridis, Konstantinos ; Doumanidis, Constantine ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</creator><creatorcontrib>Triaridis, Konstantinos ; Doumanidis, Constantine ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</creatorcontrib><description>Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2023.3342604</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic modulation classification ; Classification ; Communications systems ; Computer architecture ; Computer vision ; Convolutional neural networks ; cumulants ; Deep learning ; Feature extraction ; Machine learning ; Military applications ; Modulation ; Robustness ; Semantic segmentation ; Signal to noise ratio ; Task analysis ; transfer learning</subject><ispartof>IEEE communications letters, 2024-02, Vol.28 (2), p.328-331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8810-0345 ; 0009-0009-5868-9596 ; 0000-0001-6763-7629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10356142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10356142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Triaridis, Konstantinos</creatorcontrib><creatorcontrib>Doumanidis, Constantine</creatorcontrib><creatorcontrib>Chatzidiamantis, Nestor D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><title>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.</description><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Communications systems</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>cumulants</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Military applications</subject><subject>Modulation</subject><subject>Robustness</subject><subject>Semantic segmentation</subject><subject>Signal to noise ratio</subject><subject>Task analysis</subject><subject>transfer learning</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotTstOwzAQtBBIlMIPIA6WOLvs-pWEWxTxqJTQSzlHjmMLV2lT8hDi7zGUw87MakazS8gtwgoRsoey2FTVigMXKyEk1yDPyAKVShmPcB41pBlLkiy9JFfjuAOAlCtckHVVsTc3PdKcVnM3BVb1relofjwOvbEfdNt_maGl-Tz1ezMFS6M_d1H1B1p0ZhyDD_ZvvSYX3nSju_nnJXl_ftoWr6zcvKyLvGSBg5wYCvANCqWaxOo2km9F2oI3WklhQKQOm6Y1ErnFxhtvDfxOJpyVXDoQS3J_6o0ffs5unOpdPw-HeLLmGddcZ6iTmLo7pYJzrj4OYW-G7xpBKI2Six97aFg4</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Triaridis, Konstantinos</creator><creator>Doumanidis, Constantine</creator><creator>Chatzidiamantis, Nestor D.</creator><creator>Karagiannidis, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0009-0009-5868-9596</orcidid><orcidid>https://orcid.org/0000-0001-6763-7629</orcidid></search><sort><creationdate>20240201</creationdate><title>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</title><author>Triaridis, Konstantinos ; Doumanidis, Constantine ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-130fb1355b7c6d55bfd38d0fa6543a038e1bbda412c1bfafca0fca093ec424e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Communications systems</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>cumulants</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Military applications</topic><topic>Modulation</topic><topic>Robustness</topic><topic>Semantic segmentation</topic><topic>Signal to noise ratio</topic><topic>Task analysis</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triaridis, Konstantinos</creatorcontrib><creatorcontrib>Doumanidis, Constantine</creatorcontrib><creatorcontrib>Chatzidiamantis, Nestor D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Triaridis, Konstantinos</au><au>Doumanidis, Constantine</au><au>Chatzidiamantis, Nestor D.</au><au>Karagiannidis, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>328</spage><epage>331</epage><pages>328-331</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Automatic Modulation Classification (AMC) has become an important component in communication systems for both civil and defense applications. The shortcomings of traditional approaches to AMC have led researchers to develop complex machine learning (ML)-based approaches. In this work, inspired by multi-modal approaches for general Computer Vision tasks like Semantic Segmentation, we propose MM-Net, a multimodal approach to AMC that uses domain-specific features in the form of Higher Order Cumulants (HOCs) to improve classification performance. Furthermore, we explore the usage of HOCs in existing Deep Learning (DL)-based applications for AMC. Simulation results show that for eight modulation classification, MM-Net achieves high classification accuracy even at low SNRs, demonstrating the robustness of the multimodal approach even under challenging channel conditions, while existing methods are improved by utilizing HOCs, especially at low SNR values.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2023.3342604</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0009-0009-5868-9596</orcidid><orcidid>https://orcid.org/0000-0001-6763-7629</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2024-02, Vol.28 (2), p.328-331
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_2926269167
source IEEE Electronic Library (IEL)
subjects Automatic modulation classification
Classification
Communications systems
Computer architecture
Computer vision
Convolutional neural networks
cumulants
Deep learning
Feature extraction
Machine learning
Military applications
Modulation
Robustness
Semantic segmentation
Signal to noise ratio
Task analysis
transfer learning
title MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MM-Net:%20A%20Multi-Modal%20Approach%20Toward%20Automatic%20Modulation%20Classification&rft.jtitle=IEEE%20communications%20letters&rft.au=Triaridis,%20Konstantinos&rft.date=2024-02-01&rft.volume=28&rft.issue=2&rft.spage=328&rft.epage=331&rft.pages=328-331&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2023.3342604&rft_dat=%3Cproquest_RIE%3E2926269167%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926269167&rft_id=info:pmid/&rft_ieee_id=10356142&rfr_iscdi=true