A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery
Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an indust...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.20919-20930 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20930 |
---|---|
container_issue | |
container_start_page | 20919 |
container_title | IEEE access |
container_volume | 12 |
creator | Ragnoli, Mattia Pavone, Marino Epicoco, Nicola Pola, Giordano De Santis, Elena Barile, Gianluca Stornelli, Vincenzo |
description | Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests. |
doi_str_mv | 10.1109/ACCESS.2024.3359424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2926267839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415379</ieee_id><doaj_id>oai_doaj_org_article_042ad5d18a1e4b1396f90ba67d7f00ea</doaj_id><sourcerecordid>2926267839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9e713fa8a4826829855d71b9fe11435ea68953d6c4cd1aeb045c04d9821816cf3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDWl-Qfsg6LNdfZ_0aI6kMSRtwe2zkKVVKnOWXJ2u4H9fxRdK9mWXYWd2lum6jwSvCcH6y2YYbne7NcWUrxkTmlP-pruiROoVE0y-fTW_726m6YBbqQaJ_qoLGzTk5GONOSGbPLqz81jRjwJ_IV3Ax5xizSWmJ7Q7TxWOKOSCtsnPUy3Rjo1_PM0VCvo2H6FEd4FSLXlEj9b9jgnK-UP3LthxgpuXft39urv9OdyvHr5_3Q6bh5VrxutKQ09YsMpyRaWiWgnhe7LXAQjhTICVSgvmpePOEwt7zIXD3GtFSXvIBXbdbRddn-3BnEo82nI22UZzAXJ5MrbU6EYwmFPrhSfKEuB7wrQMGu-t7H0fMAbbtD4vWqeS_8wwVXPIc0nNvqGaSip7xXTbYsuWK3maCoT_Vwk2z_mYJR_znI95yaexPi2sCACvGJwI1mv2D529jDo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926267839</pqid></control><display><type>article</type><title>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ragnoli, Mattia ; Pavone, Marino ; Epicoco, Nicola ; Pola, Giordano ; De Santis, Elena ; Barile, Gianluca ; Stornelli, Vincenzo</creator><creatorcontrib>Ragnoli, Mattia ; Pavone, Marino ; Epicoco, Nicola ; Pola, Giordano ; De Santis, Elena ; Barile, Gianluca ; Stornelli, Vincenzo</creatorcontrib><description>Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3359424</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerometers ; Algorithms ; Artificial intelligence ; Classification ; CNC ; Computer architecture ; Computer numerical control ; digital twin ; Fault detection ; Fifth Industrial Revolution ; Industry 50 ; Internet of Things ; Machinery condition monitoring ; Machining ; Monitoring systems ; Numerical controls ; Prototypes ; Remote monitoring ; Sensors ; Vibration monitoring ; Vibrations</subject><ispartof>IEEE access, 2024, Vol.12, p.20919-20930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9e713fa8a4826829855d71b9fe11435ea68953d6c4cd1aeb045c04d9821816cf3</cites><orcidid>0000-0001-7082-9429 ; 0000-0001-9498-3148 ; 0000-0003-4937-0398 ; 0000-0002-1536-3969 ; 0000-0002-2213-6051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415379$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Ragnoli, Mattia</creatorcontrib><creatorcontrib>Pavone, Marino</creatorcontrib><creatorcontrib>Epicoco, Nicola</creatorcontrib><creatorcontrib>Pola, Giordano</creatorcontrib><creatorcontrib>De Santis, Elena</creatorcontrib><creatorcontrib>Barile, Gianluca</creatorcontrib><creatorcontrib>Stornelli, Vincenzo</creatorcontrib><title>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.</description><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>CNC</subject><subject>Computer architecture</subject><subject>Computer numerical control</subject><subject>digital twin</subject><subject>Fault detection</subject><subject>Fifth Industrial Revolution</subject><subject>Industry 50</subject><subject>Internet of Things</subject><subject>Machinery condition monitoring</subject><subject>Machining</subject><subject>Monitoring systems</subject><subject>Numerical controls</subject><subject>Prototypes</subject><subject>Remote monitoring</subject><subject>Sensors</subject><subject>Vibration monitoring</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDWl-Qfsg6LNdfZ_0aI6kMSRtwe2zkKVVKnOWXJ2u4H9fxRdK9mWXYWd2lum6jwSvCcH6y2YYbne7NcWUrxkTmlP-pruiROoVE0y-fTW_726m6YBbqQaJ_qoLGzTk5GONOSGbPLqz81jRjwJ_IV3Ax5xizSWmJ7Q7TxWOKOSCtsnPUy3Rjo1_PM0VCvo2H6FEd4FSLXlEj9b9jgnK-UP3LthxgpuXft39urv9OdyvHr5_3Q6bh5VrxutKQ09YsMpyRaWiWgnhe7LXAQjhTICVSgvmpePOEwt7zIXD3GtFSXvIBXbdbRddn-3BnEo82nI22UZzAXJ5MrbU6EYwmFPrhSfKEuB7wrQMGu-t7H0fMAbbtD4vWqeS_8wwVXPIc0nNvqGaSip7xXTbYsuWK3maCoT_Vwk2z_mYJR_znI95yaexPi2sCACvGJwI1mv2D529jDo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ragnoli, Mattia</creator><creator>Pavone, Marino</creator><creator>Epicoco, Nicola</creator><creator>Pola, Giordano</creator><creator>De Santis, Elena</creator><creator>Barile, Gianluca</creator><creator>Stornelli, Vincenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7082-9429</orcidid><orcidid>https://orcid.org/0000-0001-9498-3148</orcidid><orcidid>https://orcid.org/0000-0003-4937-0398</orcidid><orcidid>https://orcid.org/0000-0002-1536-3969</orcidid><orcidid>https://orcid.org/0000-0002-2213-6051</orcidid></search><sort><creationdate>2024</creationdate><title>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</title><author>Ragnoli, Mattia ; Pavone, Marino ; Epicoco, Nicola ; Pola, Giordano ; De Santis, Elena ; Barile, Gianluca ; Stornelli, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9e713fa8a4826829855d71b9fe11435ea68953d6c4cd1aeb045c04d9821816cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>CNC</topic><topic>Computer architecture</topic><topic>Computer numerical control</topic><topic>digital twin</topic><topic>Fault detection</topic><topic>Fifth Industrial Revolution</topic><topic>Industry 50</topic><topic>Internet of Things</topic><topic>Machinery condition monitoring</topic><topic>Machining</topic><topic>Monitoring systems</topic><topic>Numerical controls</topic><topic>Prototypes</topic><topic>Remote monitoring</topic><topic>Sensors</topic><topic>Vibration monitoring</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragnoli, Mattia</creatorcontrib><creatorcontrib>Pavone, Marino</creatorcontrib><creatorcontrib>Epicoco, Nicola</creatorcontrib><creatorcontrib>Pola, Giordano</creatorcontrib><creatorcontrib>De Santis, Elena</creatorcontrib><creatorcontrib>Barile, Gianluca</creatorcontrib><creatorcontrib>Stornelli, Vincenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragnoli, Mattia</au><au>Pavone, Marino</au><au>Epicoco, Nicola</au><au>Pola, Giordano</au><au>De Santis, Elena</au><au>Barile, Gianluca</au><au>Stornelli, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>20919</spage><epage>20930</epage><pages>20919-20930</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3359424</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7082-9429</orcidid><orcidid>https://orcid.org/0000-0001-9498-3148</orcidid><orcidid>https://orcid.org/0000-0003-4937-0398</orcidid><orcidid>https://orcid.org/0000-0002-1536-3969</orcidid><orcidid>https://orcid.org/0000-0002-2213-6051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.20919-20930 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2926267839 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accelerometers Algorithms Artificial intelligence Classification CNC Computer architecture Computer numerical control digital twin Fault detection Fifth Industrial Revolution Industry 50 Internet of Things Machinery condition monitoring Machining Monitoring systems Numerical controls Prototypes Remote monitoring Sensors Vibration monitoring Vibrations |
title | A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Condition%20and%20Fault%20Prevention%20Monitoring%20System%20for%20Industrial%20Computer%20Numerical%20Control%20Machinery&rft.jtitle=IEEE%20access&rft.au=Ragnoli,%20Mattia&rft.date=2024&rft.volume=12&rft.spage=20919&rft.epage=20930&rft.pages=20919-20930&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3359424&rft_dat=%3Cproquest_ieee_%3E2926267839%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926267839&rft_id=info:pmid/&rft_ieee_id=10415379&rft_doaj_id=oai_doaj_org_article_042ad5d18a1e4b1396f90ba67d7f00ea&rfr_iscdi=true |