A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery

Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an indust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.20919-20930
Hauptverfasser: Ragnoli, Mattia, Pavone, Marino, Epicoco, Nicola, Pola, Giordano, De Santis, Elena, Barile, Gianluca, Stornelli, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20930
container_issue
container_start_page 20919
container_title IEEE access
container_volume 12
creator Ragnoli, Mattia
Pavone, Marino
Epicoco, Nicola
Pola, Giordano
De Santis, Elena
Barile, Gianluca
Stornelli, Vincenzo
description Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.
doi_str_mv 10.1109/ACCESS.2024.3359424
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2926267839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415379</ieee_id><doaj_id>oai_doaj_org_article_042ad5d18a1e4b1396f90ba67d7f00ea</doaj_id><sourcerecordid>2926267839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9e713fa8a4826829855d71b9fe11435ea68953d6c4cd1aeb045c04d9821816cf3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDWl-Qfsg6LNdfZ_0aI6kMSRtwe2zkKVVKnOWXJ2u4H9fxRdK9mWXYWd2lum6jwSvCcH6y2YYbne7NcWUrxkTmlP-pruiROoVE0y-fTW_726m6YBbqQaJ_qoLGzTk5GONOSGbPLqz81jRjwJ_IV3Ax5xizSWmJ7Q7TxWOKOSCtsnPUy3Rjo1_PM0VCvo2H6FEd4FSLXlEj9b9jgnK-UP3LthxgpuXft39urv9OdyvHr5_3Q6bh5VrxutKQ09YsMpyRaWiWgnhe7LXAQjhTICVSgvmpePOEwt7zIXD3GtFSXvIBXbdbRddn-3BnEo82nI22UZzAXJ5MrbU6EYwmFPrhSfKEuB7wrQMGu-t7H0fMAbbtD4vWqeS_8wwVXPIc0nNvqGaSip7xXTbYsuWK3maCoT_Vwk2z_mYJR_znI95yaexPi2sCACvGJwI1mv2D529jDo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926267839</pqid></control><display><type>article</type><title>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ragnoli, Mattia ; Pavone, Marino ; Epicoco, Nicola ; Pola, Giordano ; De Santis, Elena ; Barile, Gianluca ; Stornelli, Vincenzo</creator><creatorcontrib>Ragnoli, Mattia ; Pavone, Marino ; Epicoco, Nicola ; Pola, Giordano ; De Santis, Elena ; Barile, Gianluca ; Stornelli, Vincenzo</creatorcontrib><description>Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3359424</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerometers ; Algorithms ; Artificial intelligence ; Classification ; CNC ; Computer architecture ; Computer numerical control ; digital twin ; Fault detection ; Fifth Industrial Revolution ; Industry 50 ; Internet of Things ; Machinery condition monitoring ; Machining ; Monitoring systems ; Numerical controls ; Prototypes ; Remote monitoring ; Sensors ; Vibration monitoring ; Vibrations</subject><ispartof>IEEE access, 2024, Vol.12, p.20919-20930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9e713fa8a4826829855d71b9fe11435ea68953d6c4cd1aeb045c04d9821816cf3</cites><orcidid>0000-0001-7082-9429 ; 0000-0001-9498-3148 ; 0000-0003-4937-0398 ; 0000-0002-1536-3969 ; 0000-0002-2213-6051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415379$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Ragnoli, Mattia</creatorcontrib><creatorcontrib>Pavone, Marino</creatorcontrib><creatorcontrib>Epicoco, Nicola</creatorcontrib><creatorcontrib>Pola, Giordano</creatorcontrib><creatorcontrib>De Santis, Elena</creatorcontrib><creatorcontrib>Barile, Gianluca</creatorcontrib><creatorcontrib>Stornelli, Vincenzo</creatorcontrib><title>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.</description><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>CNC</subject><subject>Computer architecture</subject><subject>Computer numerical control</subject><subject>digital twin</subject><subject>Fault detection</subject><subject>Fifth Industrial Revolution</subject><subject>Industry 50</subject><subject>Internet of Things</subject><subject>Machinery condition monitoring</subject><subject>Machining</subject><subject>Monitoring systems</subject><subject>Numerical controls</subject><subject>Prototypes</subject><subject>Remote monitoring</subject><subject>Sensors</subject><subject>Vibration monitoring</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDWl-Qfsg6LNdfZ_0aI6kMSRtwe2zkKVVKnOWXJ2u4H9fxRdK9mWXYWd2lum6jwSvCcH6y2YYbne7NcWUrxkTmlP-pruiROoVE0y-fTW_726m6YBbqQaJ_qoLGzTk5GONOSGbPLqz81jRjwJ_IV3Ax5xizSWmJ7Q7TxWOKOSCtsnPUy3Rjo1_PM0VCvo2H6FEd4FSLXlEj9b9jgnK-UP3LthxgpuXft39urv9OdyvHr5_3Q6bh5VrxutKQ09YsMpyRaWiWgnhe7LXAQjhTICVSgvmpePOEwt7zIXD3GtFSXvIBXbdbRddn-3BnEo82nI22UZzAXJ5MrbU6EYwmFPrhSfKEuB7wrQMGu-t7H0fMAbbtD4vWqeS_8wwVXPIc0nNvqGaSip7xXTbYsuWK3maCoT_Vwk2z_mYJR_znI95yaexPi2sCACvGJwI1mv2D529jDo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ragnoli, Mattia</creator><creator>Pavone, Marino</creator><creator>Epicoco, Nicola</creator><creator>Pola, Giordano</creator><creator>De Santis, Elena</creator><creator>Barile, Gianluca</creator><creator>Stornelli, Vincenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7082-9429</orcidid><orcidid>https://orcid.org/0000-0001-9498-3148</orcidid><orcidid>https://orcid.org/0000-0003-4937-0398</orcidid><orcidid>https://orcid.org/0000-0002-1536-3969</orcidid><orcidid>https://orcid.org/0000-0002-2213-6051</orcidid></search><sort><creationdate>2024</creationdate><title>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</title><author>Ragnoli, Mattia ; Pavone, Marino ; Epicoco, Nicola ; Pola, Giordano ; De Santis, Elena ; Barile, Gianluca ; Stornelli, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9e713fa8a4826829855d71b9fe11435ea68953d6c4cd1aeb045c04d9821816cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>CNC</topic><topic>Computer architecture</topic><topic>Computer numerical control</topic><topic>digital twin</topic><topic>Fault detection</topic><topic>Fifth Industrial Revolution</topic><topic>Industry 50</topic><topic>Internet of Things</topic><topic>Machinery condition monitoring</topic><topic>Machining</topic><topic>Monitoring systems</topic><topic>Numerical controls</topic><topic>Prototypes</topic><topic>Remote monitoring</topic><topic>Sensors</topic><topic>Vibration monitoring</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragnoli, Mattia</creatorcontrib><creatorcontrib>Pavone, Marino</creatorcontrib><creatorcontrib>Epicoco, Nicola</creatorcontrib><creatorcontrib>Pola, Giordano</creatorcontrib><creatorcontrib>De Santis, Elena</creatorcontrib><creatorcontrib>Barile, Gianluca</creatorcontrib><creatorcontrib>Stornelli, Vincenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragnoli, Mattia</au><au>Pavone, Marino</au><au>Epicoco, Nicola</au><au>Pola, Giordano</au><au>De Santis, Elena</au><au>Barile, Gianluca</au><au>Stornelli, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>20919</spage><epage>20930</epage><pages>20919-20930</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, the integration of smart systems within the modern industrial scenario is a continuously growing paradigm. Computer Numerical Control (CNC) machinery can heavily benefit from the introduction of Artificial Intelligence (AI) based monitoring applications. In this paper, we present an industrial condition and fault prevention monitoring system for CNC tools. The developed system is the result of an industrial project aimed at realizing a multi-purpose machine which is currently in pre-commercial stage. The results of this work represent the base platform for the further commercial development, which will be carried on from the industrial partners in accordance with clients feedbacks and specifications. This work presents the hardware architecture of the system, the web-based monitoring platform for remote management, and the AI framework used for fault monitoring. The multi-purpose machine is equipped with accelerometer units to monitor the vibration in multiple points of the structure. The control unit of the machine is connected to the sensing nodes and is used to communicate the actual machine state to a remote web platform. The accelerometric data are analyzed through an AI algorithm to perform fault detection. The fault detection algorithm was trained with the measurements performed on the machine under controlled environment faulty operation. The Internet of Things (IoT) based architecture has proven to be effective to facilitate the supervision of the machining processes, and the AI-based classification shows good classification performances for the fault detection tests.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3359424</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7082-9429</orcidid><orcidid>https://orcid.org/0000-0001-9498-3148</orcidid><orcidid>https://orcid.org/0000-0003-4937-0398</orcidid><orcidid>https://orcid.org/0000-0002-1536-3969</orcidid><orcidid>https://orcid.org/0000-0002-2213-6051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.20919-20930
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2926267839
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accelerometers
Algorithms
Artificial intelligence
Classification
CNC
Computer architecture
Computer numerical control
digital twin
Fault detection
Fifth Industrial Revolution
Industry 50
Internet of Things
Machinery condition monitoring
Machining
Monitoring systems
Numerical controls
Prototypes
Remote monitoring
Sensors
Vibration monitoring
Vibrations
title A Condition and Fault Prevention Monitoring System for Industrial Computer Numerical Control Machinery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Condition%20and%20Fault%20Prevention%20Monitoring%20System%20for%20Industrial%20Computer%20Numerical%20Control%20Machinery&rft.jtitle=IEEE%20access&rft.au=Ragnoli,%20Mattia&rft.date=2024&rft.volume=12&rft.spage=20919&rft.epage=20930&rft.pages=20919-20930&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3359424&rft_dat=%3Cproquest_ieee_%3E2926267839%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926267839&rft_id=info:pmid/&rft_ieee_id=10415379&rft_doaj_id=oai_doaj_org_article_042ad5d18a1e4b1396f90ba67d7f00ea&rfr_iscdi=true