Leveraging Permuted Image Restoration for Improved Interpretation of Remote Sensing Images

In this study, we introduce a novel self-supervised learning adapter based on permutated image restoration (PIR) for effectively transferring pretrained weights from natural images to remote sensing object detection tasks. The adapter's unique methodology encompasses a three-phase process: segm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Hauptverfasser: Bai, Awen, Chen, Jie, Yang, Wei, Men, Zhirong, Zhang, Shengming, Zeng, Hongcheng, Xu, Weichen, Cao, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!