Leveraging Permuted Image Restoration for Improved Interpretation of Remote Sensing Images
In this study, we introduce a novel self-supervised learning adapter based on permutated image restoration (PIR) for effectively transferring pretrained weights from natural images to remote sensing object detection tasks. The adapter's unique methodology encompasses a three-phase process: segm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!