Towards resilient average consensus in multi-agent systems: a detection and compensation approach

Consensus is one of the fundamental distributed control technologies for collaboration in multi-agent systems such as collaborative handling in intelligent manufacturing. In this paper, we study the problem of resilient average consensus for multi-agent systems with misbehaving nodes. To protect con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2024-02, Vol.25 (2), p.182-196
Hauptverfasser: Fang, Chongrong, Zheng, Wenzhe, He, Zhiyu, He, Jianping, Zhao, Chengcheng, Wang, Jingpei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 182
container_title Frontiers of information technology & electronic engineering
container_volume 25
creator Fang, Chongrong
Zheng, Wenzhe
He, Zhiyu
He, Jianping
Zhao, Chengcheng
Wang, Jingpei
description Consensus is one of the fundamental distributed control technologies for collaboration in multi-agent systems such as collaborative handling in intelligent manufacturing. In this paper, we study the problem of resilient average consensus for multi-agent systems with misbehaving nodes. To protect consensus value from being influenced by misbehaving nodes, we address this problem by detecting misbehaviors, mitigating the corresponding adverse impact, and achieving the resilient average consensus. General types of misbehaviors are considered, including attacks, accidental faults, and link failures. We characterize the adverse impact of misbehaving nodes in a distributed manner via two-hop communication information and develop a deterministic detection compensation based consensus (D-DCC) algorithm with a decaying fault-tolerant error bound. Considering scenarios wherein information sets are intermittently available due to link failures, a stochastic extension named stochastic detection compensation based consensus (S-DCC) algorithm is proposed. We prove that D-DCC and S-DCC allow nodes to asymptotically achieve resilient accurate average consensus and unbiased resilient average consensus in a statistical sense, respectively. Then, the Wasserstein distance is introduced to analyze the accuracy of S-DCC. Finally, extensive simulations are conducted to verify the effectiveness of the proposed algorithms.
doi_str_mv 10.1631/FITEE.2300467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926157019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925771222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-a7eb31abbcdfb54159e22282367be5aa0c973cd4e188cb8473737fa8d2fd9dff3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqP3gOetybZjyTepLRaELzU8zKbzNYt3eyabJX-90a34kWQOcwHvzcPHiHXnM15kfLb1XqzXM5FylhWyDMyEUzniY77-c_MVXZJZiHsGGO84FpqNSGw6T7A20A9hmbfoBsovKOHLVLTuYAuHAJtHG0P-6FJ4jkC4RgGbMMdBWpxQDM0naPgbFS0fVTAeOh734F5vSIXNewDzk59Sl5Wy83iMXl6flgv7p8SI5QaEpBYpRyqyti6yjOeaxRCKJEWssIcgBktU2Mz5EqZSmUyjVWDsqK22tZ1OiU3499o-3bAMJS77uBdtCyFFgXPJeP6HyqXkkfXSCUjZXwXgse67H3Tgj-WnJVfcZffcZenuCM_H_kQObdF__v1b8Ens5uCRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925771222</pqid></control><display><type>article</type><title>Towards resilient average consensus in multi-agent systems: a detection and compensation approach</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Fang, Chongrong ; Zheng, Wenzhe ; He, Zhiyu ; He, Jianping ; Zhao, Chengcheng ; Wang, Jingpei</creator><creatorcontrib>Fang, Chongrong ; Zheng, Wenzhe ; He, Zhiyu ; He, Jianping ; Zhao, Chengcheng ; Wang, Jingpei</creatorcontrib><description>Consensus is one of the fundamental distributed control technologies for collaboration in multi-agent systems such as collaborative handling in intelligent manufacturing. In this paper, we study the problem of resilient average consensus for multi-agent systems with misbehaving nodes. To protect consensus value from being influenced by misbehaving nodes, we address this problem by detecting misbehaviors, mitigating the corresponding adverse impact, and achieving the resilient average consensus. General types of misbehaviors are considered, including attacks, accidental faults, and link failures. We characterize the adverse impact of misbehaving nodes in a distributed manner via two-hop communication information and develop a deterministic detection compensation based consensus (D-DCC) algorithm with a decaying fault-tolerant error bound. Considering scenarios wherein information sets are intermittently available due to link failures, a stochastic extension named stochastic detection compensation based consensus (S-DCC) algorithm is proposed. We prove that D-DCC and S-DCC allow nodes to asymptotically achieve resilient accurate average consensus and unbiased resilient average consensus in a statistical sense, respectively. Then, the Wasserstein distance is introduced to analyze the accuracy of S-DCC. Finally, extensive simulations are conducted to verify the effectiveness of the proposed algorithms.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2300467</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Algorithms ; Collaboration ; Communications Engineering ; Compensation ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Fault tolerance ; Instrumentation ; Intelligent manufacturing systems ; Multiagent systems ; Networks ; Nodes ; Research Article</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2024-02, Vol.25 (2), p.182-196</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-a7eb31abbcdfb54159e22282367be5aa0c973cd4e188cb8473737fa8d2fd9dff3</cites><orcidid>0000-0002-6253-7802 ; 0000-0003-2357-0228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.2300467$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2925771222?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Fang, Chongrong</creatorcontrib><creatorcontrib>Zheng, Wenzhe</creatorcontrib><creatorcontrib>He, Zhiyu</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Zhao, Chengcheng</creatorcontrib><creatorcontrib>Wang, Jingpei</creatorcontrib><title>Towards resilient average consensus in multi-agent systems: a detection and compensation approach</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>Consensus is one of the fundamental distributed control technologies for collaboration in multi-agent systems such as collaborative handling in intelligent manufacturing. In this paper, we study the problem of resilient average consensus for multi-agent systems with misbehaving nodes. To protect consensus value from being influenced by misbehaving nodes, we address this problem by detecting misbehaviors, mitigating the corresponding adverse impact, and achieving the resilient average consensus. General types of misbehaviors are considered, including attacks, accidental faults, and link failures. We characterize the adverse impact of misbehaving nodes in a distributed manner via two-hop communication information and develop a deterministic detection compensation based consensus (D-DCC) algorithm with a decaying fault-tolerant error bound. Considering scenarios wherein information sets are intermittently available due to link failures, a stochastic extension named stochastic detection compensation based consensus (S-DCC) algorithm is proposed. We prove that D-DCC and S-DCC allow nodes to asymptotically achieve resilient accurate average consensus and unbiased resilient average consensus in a statistical sense, respectively. Then, the Wasserstein distance is introduced to analyze the accuracy of S-DCC. Finally, extensive simulations are conducted to verify the effectiveness of the proposed algorithms.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Communications Engineering</subject><subject>Compensation</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Fault tolerance</subject><subject>Instrumentation</subject><subject>Intelligent manufacturing systems</subject><subject>Multiagent systems</subject><subject>Networks</subject><subject>Nodes</subject><subject>Research Article</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkM1LAzEQxYMoWGqP3gOetybZjyTepLRaELzU8zKbzNYt3eyabJX-90a34kWQOcwHvzcPHiHXnM15kfLb1XqzXM5FylhWyDMyEUzniY77-c_MVXZJZiHsGGO84FpqNSGw6T7A20A9hmbfoBsovKOHLVLTuYAuHAJtHG0P-6FJ4jkC4RgGbMMdBWpxQDM0naPgbFS0fVTAeOh734F5vSIXNewDzk59Sl5Wy83iMXl6flgv7p8SI5QaEpBYpRyqyti6yjOeaxRCKJEWssIcgBktU2Mz5EqZSmUyjVWDsqK22tZ1OiU3499o-3bAMJS77uBdtCyFFgXPJeP6HyqXkkfXSCUjZXwXgse67H3Tgj-WnJVfcZffcZenuCM_H_kQObdF__v1b8Ens5uCRw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fang, Chongrong</creator><creator>Zheng, Wenzhe</creator><creator>He, Zhiyu</creator><creator>He, Jianping</creator><creator>Zhao, Chengcheng</creator><creator>Wang, Jingpei</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6253-7802</orcidid><orcidid>https://orcid.org/0000-0003-2357-0228</orcidid></search><sort><creationdate>20240201</creationdate><title>Towards resilient average consensus in multi-agent systems: a detection and compensation approach</title><author>Fang, Chongrong ; Zheng, Wenzhe ; He, Zhiyu ; He, Jianping ; Zhao, Chengcheng ; Wang, Jingpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-a7eb31abbcdfb54159e22282367be5aa0c973cd4e188cb8473737fa8d2fd9dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Communications Engineering</topic><topic>Compensation</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Fault tolerance</topic><topic>Instrumentation</topic><topic>Intelligent manufacturing systems</topic><topic>Multiagent systems</topic><topic>Networks</topic><topic>Nodes</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Chongrong</creatorcontrib><creatorcontrib>Zheng, Wenzhe</creatorcontrib><creatorcontrib>He, Zhiyu</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Zhao, Chengcheng</creatorcontrib><creatorcontrib>Wang, Jingpei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Chongrong</au><au>Zheng, Wenzhe</au><au>He, Zhiyu</au><au>He, Jianping</au><au>Zhao, Chengcheng</au><au>Wang, Jingpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards resilient average consensus in multi-agent systems: a detection and compensation approach</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><spage>182</spage><epage>196</epage><pages>182-196</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Consensus is one of the fundamental distributed control technologies for collaboration in multi-agent systems such as collaborative handling in intelligent manufacturing. In this paper, we study the problem of resilient average consensus for multi-agent systems with misbehaving nodes. To protect consensus value from being influenced by misbehaving nodes, we address this problem by detecting misbehaviors, mitigating the corresponding adverse impact, and achieving the resilient average consensus. General types of misbehaviors are considered, including attacks, accidental faults, and link failures. We characterize the adverse impact of misbehaving nodes in a distributed manner via two-hop communication information and develop a deterministic detection compensation based consensus (D-DCC) algorithm with a decaying fault-tolerant error bound. Considering scenarios wherein information sets are intermittently available due to link failures, a stochastic extension named stochastic detection compensation based consensus (S-DCC) algorithm is proposed. We prove that D-DCC and S-DCC allow nodes to asymptotically achieve resilient accurate average consensus and unbiased resilient average consensus in a statistical sense, respectively. Then, the Wasserstein distance is introduced to analyze the accuracy of S-DCC. Finally, extensive simulations are conducted to verify the effectiveness of the proposed algorithms.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2300467</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6253-7802</orcidid><orcidid>https://orcid.org/0000-0003-2357-0228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2024-02, Vol.25 (2), p.182-196
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2926157019
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Collaboration
Communications Engineering
Compensation
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Electrical Engineering
Electronics and Microelectronics
Fault tolerance
Instrumentation
Intelligent manufacturing systems
Multiagent systems
Networks
Nodes
Research Article
title Towards resilient average consensus in multi-agent systems: a detection and compensation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20resilient%20average%20consensus%20in%20multi-agent%20systems:%20a%20detection%20and%20compensation%20approach&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Fang,%20Chongrong&rft.date=2024-02-01&rft.volume=25&rft.issue=2&rft.spage=182&rft.epage=196&rft.pages=182-196&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2300467&rft_dat=%3Cproquest_cross%3E2925771222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925771222&rft_id=info:pmid/&rfr_iscdi=true