Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection
As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusi...
Gespeichert in:
Veröffentlicht in: | Peer-to-peer networking and applications 2024, Vol.17 (1), p.227-245 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | Peer-to-peer networking and applications |
container_volume | 17 |
creator | Li, Fang Shen, Hang Mai, Jieai Wang, Tianjing Dai, Yuanfei Miao, Xiaodong |
description | As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218%
-
13.844% 0.215%
-
13.779%, and 2.056%
-
22.587%. |
doi_str_mv | 10.1007/s12083-023-01595-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925772416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925772416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-430bac087af68a07db48d71caaae5bfdef86141e234d8c29dc0ba3a00459b9063</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnqtJmn4dZfELFvSg5zBNprVrN1mTdMX_3tSK3jwMMzx-7zE8Qs4ZvWSUlleecVplKeVxWF7naXFAFqzOirQQOT38vQU_JifebygtWJbzBemeHKbBQW9QJwOYboQOk63VOKRoXsGoqCtrdB96a2BIOjToIPR7TEDv0XlwfZQNhg_r3nzSWpf0JrjRRz7RGFBNzlNy1MLg8exnL8nL7c3z6j5dP949rK7XqeIlDanIaAOKViW0RQW01I2odMkUAGDetBrbqmCCIc-ErhSvtYp8BpSKvG5qWmRLcjHn7px9H9EHubGji497yWuelyUXbKL4TClnvXfYyp3rt-A-JaNyKlTOhcpYqPwuVE6mbDb5CJsO3V_0P64vlQl7fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925772416</pqid></control><display><type>article</type><title>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</title><source>SpringerLink (Online service)</source><creator>Li, Fang ; Shen, Hang ; Mai, Jieai ; Wang, Tianjing ; Dai, Yuanfei ; Miao, Xiaodong</creator><creatorcontrib>Li, Fang ; Shen, Hang ; Mai, Jieai ; Wang, Tianjing ; Dai, Yuanfei ; Miao, Xiaodong</creatorcontrib><description>As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218%
-
13.844% 0.215%
-
13.779%, and 2.056%
-
22.587%.</description><identifier>ISSN: 1936-6442</identifier><identifier>EISSN: 1936-6450</identifier><identifier>DOI: 10.1007/s12083-023-01595-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; Communications Engineering ; Computer Communication Networks ; Cybersecurity ; Datasets ; Deep learning ; Engineering ; Feature extraction ; Generative adversarial networks ; Information Systems and Communication Service ; Intrusion detection systems ; Language ; Machine learning ; Malware ; Natural language ; Networks ; Neural networks ; Peer to peer computing ; Semantics ; Signal,Image and Speech Processing ; Special Issue on 2 - Track on Security and Privacy</subject><ispartof>Peer-to-peer networking and applications, 2024, Vol.17 (1), p.227-245</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-430bac087af68a07db48d71caaae5bfdef86141e234d8c29dc0ba3a00459b9063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12083-023-01595-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12083-023-01595-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Shen, Hang</creatorcontrib><creatorcontrib>Mai, Jieai</creatorcontrib><creatorcontrib>Wang, Tianjing</creatorcontrib><creatorcontrib>Dai, Yuanfei</creatorcontrib><creatorcontrib>Miao, Xiaodong</creatorcontrib><title>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</title><title>Peer-to-peer networking and applications</title><addtitle>Peer-to-Peer Netw. Appl</addtitle><description>As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218%
-
13.844% 0.215%
-
13.779%, and 2.056%
-
22.587%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Information Systems and Communication Service</subject><subject>Intrusion detection systems</subject><subject>Language</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Natural language</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Peer to peer computing</subject><subject>Semantics</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue on 2 - Track on Security and Privacy</subject><issn>1936-6442</issn><issn>1936-6450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LxDAQxYMouK7-A54KnqtJmn4dZfELFvSg5zBNprVrN1mTdMX_3tSK3jwMMzx-7zE8Qs4ZvWSUlleecVplKeVxWF7naXFAFqzOirQQOT38vQU_JifebygtWJbzBemeHKbBQW9QJwOYboQOk63VOKRoXsGoqCtrdB96a2BIOjToIPR7TEDv0XlwfZQNhg_r3nzSWpf0JrjRRz7RGFBNzlNy1MLg8exnL8nL7c3z6j5dP949rK7XqeIlDanIaAOKViW0RQW01I2odMkUAGDetBrbqmCCIc-ErhSvtYp8BpSKvG5qWmRLcjHn7px9H9EHubGji497yWuelyUXbKL4TClnvXfYyp3rt-A-JaNyKlTOhcpYqPwuVE6mbDb5CJsO3V_0P64vlQl7fA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Fang</creator><creator>Shen, Hang</creator><creator>Mai, Jieai</creator><creator>Wang, Tianjing</creator><creator>Dai, Yuanfei</creator><creator>Miao, Xiaodong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2024</creationdate><title>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</title><author>Li, Fang ; Shen, Hang ; Mai, Jieai ; Wang, Tianjing ; Dai, Yuanfei ; Miao, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-430bac087af68a07db48d71caaae5bfdef86141e234d8c29dc0ba3a00459b9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Information Systems and Communication Service</topic><topic>Intrusion detection systems</topic><topic>Language</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Natural language</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Peer to peer computing</topic><topic>Semantics</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue on 2 - Track on Security and Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Shen, Hang</creatorcontrib><creatorcontrib>Mai, Jieai</creatorcontrib><creatorcontrib>Wang, Tianjing</creatorcontrib><creatorcontrib>Dai, Yuanfei</creatorcontrib><creatorcontrib>Miao, Xiaodong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Peer-to-peer networking and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Shen, Hang</au><au>Mai, Jieai</au><au>Wang, Tianjing</au><au>Dai, Yuanfei</au><au>Miao, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</atitle><jtitle>Peer-to-peer networking and applications</jtitle><stitle>Peer-to-Peer Netw. Appl</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>227</spage><epage>245</epage><pages>227-245</pages><issn>1936-6442</issn><eissn>1936-6450</eissn><abstract>As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218%
-
13.844% 0.215%
-
13.779%, and 2.056%
-
22.587%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12083-023-01595-6</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-6442 |
ispartof | Peer-to-peer networking and applications, 2024, Vol.17 (1), p.227-245 |
issn | 1936-6442 1936-6450 |
language | eng |
recordid | cdi_proquest_journals_2925772416 |
source | SpringerLink (Online service) |
subjects | Accuracy Algorithms Artificial intelligence Classification Communications Engineering Computer Communication Networks Cybersecurity Datasets Deep learning Engineering Feature extraction Generative adversarial networks Information Systems and Communication Service Intrusion detection systems Language Machine learning Malware Natural language Networks Neural networks Peer to peer computing Semantics Signal,Image and Speech Processing Special Issue on 2 - Track on Security and Privacy |
title | Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-trained%20language%20model-enhanced%20conditional%20generative%20adversarial%20networks%20for%20intrusion%20detection&rft.jtitle=Peer-to-peer%20networking%20and%20applications&rft.au=Li,%20Fang&rft.date=2024&rft.volume=17&rft.issue=1&rft.spage=227&rft.epage=245&rft.pages=227-245&rft.issn=1936-6442&rft.eissn=1936-6450&rft_id=info:doi/10.1007/s12083-023-01595-6&rft_dat=%3Cproquest_cross%3E2925772416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925772416&rft_id=info:pmid/&rfr_iscdi=true |