Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection

As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Peer-to-peer networking and applications 2024, Vol.17 (1), p.227-245
Hauptverfasser: Li, Fang, Shen, Hang, Mai, Jieai, Wang, Tianjing, Dai, Yuanfei, Miao, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 1
container_start_page 227
container_title Peer-to-peer networking and applications
container_volume 17
creator Li, Fang
Shen, Hang
Mai, Jieai
Wang, Tianjing
Dai, Yuanfei
Miao, Xiaodong
description As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218% - 13.844% 0.215% - 13.779%, and 2.056% - 22.587%.
doi_str_mv 10.1007/s12083-023-01595-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925772416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925772416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-430bac087af68a07db48d71caaae5bfdef86141e234d8c29dc0ba3a00459b9063</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnqtJmn4dZfELFvSg5zBNprVrN1mTdMX_3tSK3jwMMzx-7zE8Qs4ZvWSUlleecVplKeVxWF7naXFAFqzOirQQOT38vQU_JifebygtWJbzBemeHKbBQW9QJwOYboQOk63VOKRoXsGoqCtrdB96a2BIOjToIPR7TEDv0XlwfZQNhg_r3nzSWpf0JrjRRz7RGFBNzlNy1MLg8exnL8nL7c3z6j5dP949rK7XqeIlDanIaAOKViW0RQW01I2odMkUAGDetBrbqmCCIc-ErhSvtYp8BpSKvG5qWmRLcjHn7px9H9EHubGji497yWuelyUXbKL4TClnvXfYyp3rt-A-JaNyKlTOhcpYqPwuVE6mbDb5CJsO3V_0P64vlQl7fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925772416</pqid></control><display><type>article</type><title>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</title><source>SpringerLink (Online service)</source><creator>Li, Fang ; Shen, Hang ; Mai, Jieai ; Wang, Tianjing ; Dai, Yuanfei ; Miao, Xiaodong</creator><creatorcontrib>Li, Fang ; Shen, Hang ; Mai, Jieai ; Wang, Tianjing ; Dai, Yuanfei ; Miao, Xiaodong</creatorcontrib><description>As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218% - 13.844% 0.215% - 13.779%, and 2.056% - 22.587%.</description><identifier>ISSN: 1936-6442</identifier><identifier>EISSN: 1936-6450</identifier><identifier>DOI: 10.1007/s12083-023-01595-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; Communications Engineering ; Computer Communication Networks ; Cybersecurity ; Datasets ; Deep learning ; Engineering ; Feature extraction ; Generative adversarial networks ; Information Systems and Communication Service ; Intrusion detection systems ; Language ; Machine learning ; Malware ; Natural language ; Networks ; Neural networks ; Peer to peer computing ; Semantics ; Signal,Image and Speech Processing ; Special Issue on 2 - Track on Security and Privacy</subject><ispartof>Peer-to-peer networking and applications, 2024, Vol.17 (1), p.227-245</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-430bac087af68a07db48d71caaae5bfdef86141e234d8c29dc0ba3a00459b9063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12083-023-01595-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12083-023-01595-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Shen, Hang</creatorcontrib><creatorcontrib>Mai, Jieai</creatorcontrib><creatorcontrib>Wang, Tianjing</creatorcontrib><creatorcontrib>Dai, Yuanfei</creatorcontrib><creatorcontrib>Miao, Xiaodong</creatorcontrib><title>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</title><title>Peer-to-peer networking and applications</title><addtitle>Peer-to-Peer Netw. Appl</addtitle><description>As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218% - 13.844% 0.215% - 13.779%, and 2.056% - 22.587%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Information Systems and Communication Service</subject><subject>Intrusion detection systems</subject><subject>Language</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Natural language</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Peer to peer computing</subject><subject>Semantics</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue on 2 - Track on Security and Privacy</subject><issn>1936-6442</issn><issn>1936-6450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LxDAQxYMouK7-A54KnqtJmn4dZfELFvSg5zBNprVrN1mTdMX_3tSK3jwMMzx-7zE8Qs4ZvWSUlleecVplKeVxWF7naXFAFqzOirQQOT38vQU_JifebygtWJbzBemeHKbBQW9QJwOYboQOk63VOKRoXsGoqCtrdB96a2BIOjToIPR7TEDv0XlwfZQNhg_r3nzSWpf0JrjRRz7RGFBNzlNy1MLg8exnL8nL7c3z6j5dP949rK7XqeIlDanIaAOKViW0RQW01I2odMkUAGDetBrbqmCCIc-ErhSvtYp8BpSKvG5qWmRLcjHn7px9H9EHubGji497yWuelyUXbKL4TClnvXfYyp3rt-A-JaNyKlTOhcpYqPwuVE6mbDb5CJsO3V_0P64vlQl7fA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Fang</creator><creator>Shen, Hang</creator><creator>Mai, Jieai</creator><creator>Wang, Tianjing</creator><creator>Dai, Yuanfei</creator><creator>Miao, Xiaodong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2024</creationdate><title>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</title><author>Li, Fang ; Shen, Hang ; Mai, Jieai ; Wang, Tianjing ; Dai, Yuanfei ; Miao, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-430bac087af68a07db48d71caaae5bfdef86141e234d8c29dc0ba3a00459b9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Information Systems and Communication Service</topic><topic>Intrusion detection systems</topic><topic>Language</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Natural language</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Peer to peer computing</topic><topic>Semantics</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue on 2 - Track on Security and Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Shen, Hang</creatorcontrib><creatorcontrib>Mai, Jieai</creatorcontrib><creatorcontrib>Wang, Tianjing</creatorcontrib><creatorcontrib>Dai, Yuanfei</creatorcontrib><creatorcontrib>Miao, Xiaodong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Peer-to-peer networking and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Shen, Hang</au><au>Mai, Jieai</au><au>Wang, Tianjing</au><au>Dai, Yuanfei</au><au>Miao, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection</atitle><jtitle>Peer-to-peer networking and applications</jtitle><stitle>Peer-to-Peer Netw. Appl</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>227</spage><epage>245</epage><pages>227-245</pages><issn>1936-6442</issn><eissn>1936-6450</eissn><abstract>As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218% - 13.844% 0.215% - 13.779%, and 2.056% - 22.587%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12083-023-01595-6</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-6442
ispartof Peer-to-peer networking and applications, 2024, Vol.17 (1), p.227-245
issn 1936-6442
1936-6450
language eng
recordid cdi_proquest_journals_2925772416
source SpringerLink (Online service)
subjects Accuracy
Algorithms
Artificial intelligence
Classification
Communications Engineering
Computer Communication Networks
Cybersecurity
Datasets
Deep learning
Engineering
Feature extraction
Generative adversarial networks
Information Systems and Communication Service
Intrusion detection systems
Language
Machine learning
Malware
Natural language
Networks
Neural networks
Peer to peer computing
Semantics
Signal,Image and Speech Processing
Special Issue on 2 - Track on Security and Privacy
title Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-trained%20language%20model-enhanced%20conditional%20generative%20adversarial%20networks%20for%20intrusion%20detection&rft.jtitle=Peer-to-peer%20networking%20and%20applications&rft.au=Li,%20Fang&rft.date=2024&rft.volume=17&rft.issue=1&rft.spage=227&rft.epage=245&rft.pages=227-245&rft.issn=1936-6442&rft.eissn=1936-6450&rft_id=info:doi/10.1007/s12083-023-01595-6&rft_dat=%3Cproquest_cross%3E2925772416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925772416&rft_id=info:pmid/&rfr_iscdi=true