ChemLLM: A Chemical Large Language Model

Large language models (LLMs) have made impressive progress in chemistry applications. However, the community lacks an LLM specifically designed for chemistry. The main challenges are two-fold: firstly, most chemical data and scientific knowledge are stored in structured databases, which limits the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Zhang, Di, Liu, Wei, Tan, Qian, Chen, Jingdan, Yan, Hang, Yan, Yuliang, Li, Jiatong, Huang, Weiran, Yue, Xiangyu, Ouyang, Wanli, Zhou, Dongzhan, Zhang, Shufei, Mao, Su, Han-Sen, Zhong, Li, Yuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Di
Liu, Wei
Tan, Qian
Chen, Jingdan
Yan, Hang
Yan, Yuliang
Li, Jiatong
Huang, Weiran
Yue, Xiangyu
Ouyang, Wanli
Zhou, Dongzhan
Zhang, Shufei
Mao, Su
Han-Sen, Zhong
Li, Yuqiang
description Large language models (LLMs) have made impressive progress in chemistry applications. However, the community lacks an LLM specifically designed for chemistry. The main challenges are two-fold: firstly, most chemical data and scientific knowledge are stored in structured databases, which limits the model's ability to sustain coherent dialogue when used directly. Secondly, there is an absence of objective and fair benchmark that encompass most chemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry. It also includes ChemData, a dataset specifically designed for instruction tuning, and ChemBench, a robust benchmark covering nine essential chemistry tasks. ChemLLM is adept at performing various tasks across chemical disciplines with fluid dialogue interaction. Notably, ChemLLM achieves results comparable to GPT-4 on the core chemical tasks and demonstrates competitive performance with LLMs of similar size in general scenarios. ChemLLM paves a new path for exploration in chemical studies, and our method of incorporating structured chemical knowledge into dialogue systems sets a new standard for developing LLMs in various scientific fields. Codes, Datasets, and Model weights are publicly accessible at https://hf.co/AI4Chem
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2925761657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925761657</sourcerecordid><originalsourceid>FETCH-proquest_journals_29257616573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcM5IzfXx8bVScFQAMTOTE3MUfBKL0lOBZF56aSKQ4ZufkprDw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRpZGpuZmhmam5sbEqQIA8TAupA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925761657</pqid></control><display><type>article</type><title>ChemLLM: A Chemical Large Language Model</title><source>Free E- Journals</source><creator>Zhang, Di ; Liu, Wei ; Tan, Qian ; Chen, Jingdan ; Yan, Hang ; Yan, Yuliang ; Li, Jiatong ; Huang, Weiran ; Yue, Xiangyu ; Ouyang, Wanli ; Zhou, Dongzhan ; Zhang, Shufei ; Mao, Su ; Han-Sen, Zhong ; Li, Yuqiang</creator><creatorcontrib>Zhang, Di ; Liu, Wei ; Tan, Qian ; Chen, Jingdan ; Yan, Hang ; Yan, Yuliang ; Li, Jiatong ; Huang, Weiran ; Yue, Xiangyu ; Ouyang, Wanli ; Zhou, Dongzhan ; Zhang, Shufei ; Mao, Su ; Han-Sen, Zhong ; Li, Yuqiang</creatorcontrib><description>Large language models (LLMs) have made impressive progress in chemistry applications. However, the community lacks an LLM specifically designed for chemistry. The main challenges are two-fold: firstly, most chemical data and scientific knowledge are stored in structured databases, which limits the model's ability to sustain coherent dialogue when used directly. Secondly, there is an absence of objective and fair benchmark that encompass most chemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry. It also includes ChemData, a dataset specifically designed for instruction tuning, and ChemBench, a robust benchmark covering nine essential chemistry tasks. ChemLLM is adept at performing various tasks across chemical disciplines with fluid dialogue interaction. Notably, ChemLLM achieves results comparable to GPT-4 on the core chemical tasks and demonstrates competitive performance with LLMs of similar size in general scenarios. ChemLLM paves a new path for exploration in chemical studies, and our method of incorporating structured chemical knowledge into dialogue systems sets a new standard for developing LLMs in various scientific fields. Codes, Datasets, and Model weights are publicly accessible at https://hf.co/AI4Chem</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemistry ; Large language models ; Molecular properties ; Structured data</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Tan, Qian</creatorcontrib><creatorcontrib>Chen, Jingdan</creatorcontrib><creatorcontrib>Yan, Hang</creatorcontrib><creatorcontrib>Yan, Yuliang</creatorcontrib><creatorcontrib>Li, Jiatong</creatorcontrib><creatorcontrib>Huang, Weiran</creatorcontrib><creatorcontrib>Yue, Xiangyu</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>Zhou, Dongzhan</creatorcontrib><creatorcontrib>Zhang, Shufei</creatorcontrib><creatorcontrib>Mao, Su</creatorcontrib><creatorcontrib>Han-Sen, Zhong</creatorcontrib><creatorcontrib>Li, Yuqiang</creatorcontrib><title>ChemLLM: A Chemical Large Language Model</title><title>arXiv.org</title><description>Large language models (LLMs) have made impressive progress in chemistry applications. However, the community lacks an LLM specifically designed for chemistry. The main challenges are two-fold: firstly, most chemical data and scientific knowledge are stored in structured databases, which limits the model's ability to sustain coherent dialogue when used directly. Secondly, there is an absence of objective and fair benchmark that encompass most chemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry. It also includes ChemData, a dataset specifically designed for instruction tuning, and ChemBench, a robust benchmark covering nine essential chemistry tasks. ChemLLM is adept at performing various tasks across chemical disciplines with fluid dialogue interaction. Notably, ChemLLM achieves results comparable to GPT-4 on the core chemical tasks and demonstrates competitive performance with LLMs of similar size in general scenarios. ChemLLM paves a new path for exploration in chemical studies, and our method of incorporating structured chemical knowledge into dialogue systems sets a new standard for developing LLMs in various scientific fields. Codes, Datasets, and Model weights are publicly accessible at https://hf.co/AI4Chem</description><subject>Chemistry</subject><subject>Large language models</subject><subject>Molecular properties</subject><subject>Structured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcM5IzfXx8bVScFQAMTOTE3MUfBKL0lOBZF56aSKQ4ZufkprDw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRpZGpuZmhmam5sbEqQIA8TAupA</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Zhang, Di</creator><creator>Liu, Wei</creator><creator>Tan, Qian</creator><creator>Chen, Jingdan</creator><creator>Yan, Hang</creator><creator>Yan, Yuliang</creator><creator>Li, Jiatong</creator><creator>Huang, Weiran</creator><creator>Yue, Xiangyu</creator><creator>Ouyang, Wanli</creator><creator>Zhou, Dongzhan</creator><creator>Zhang, Shufei</creator><creator>Mao, Su</creator><creator>Han-Sen, Zhong</creator><creator>Li, Yuqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240425</creationdate><title>ChemLLM: A Chemical Large Language Model</title><author>Zhang, Di ; Liu, Wei ; Tan, Qian ; Chen, Jingdan ; Yan, Hang ; Yan, Yuliang ; Li, Jiatong ; Huang, Weiran ; Yue, Xiangyu ; Ouyang, Wanli ; Zhou, Dongzhan ; Zhang, Shufei ; Mao, Su ; Han-Sen, Zhong ; Li, Yuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29257616573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Large language models</topic><topic>Molecular properties</topic><topic>Structured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Tan, Qian</creatorcontrib><creatorcontrib>Chen, Jingdan</creatorcontrib><creatorcontrib>Yan, Hang</creatorcontrib><creatorcontrib>Yan, Yuliang</creatorcontrib><creatorcontrib>Li, Jiatong</creatorcontrib><creatorcontrib>Huang, Weiran</creatorcontrib><creatorcontrib>Yue, Xiangyu</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>Zhou, Dongzhan</creatorcontrib><creatorcontrib>Zhang, Shufei</creatorcontrib><creatorcontrib>Mao, Su</creatorcontrib><creatorcontrib>Han-Sen, Zhong</creatorcontrib><creatorcontrib>Li, Yuqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Liu, Wei</au><au>Tan, Qian</au><au>Chen, Jingdan</au><au>Yan, Hang</au><au>Yan, Yuliang</au><au>Li, Jiatong</au><au>Huang, Weiran</au><au>Yue, Xiangyu</au><au>Ouyang, Wanli</au><au>Zhou, Dongzhan</au><au>Zhang, Shufei</au><au>Mao, Su</au><au>Han-Sen, Zhong</au><au>Li, Yuqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ChemLLM: A Chemical Large Language Model</atitle><jtitle>arXiv.org</jtitle><date>2024-04-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) have made impressive progress in chemistry applications. However, the community lacks an LLM specifically designed for chemistry. The main challenges are two-fold: firstly, most chemical data and scientific knowledge are stored in structured databases, which limits the model's ability to sustain coherent dialogue when used directly. Secondly, there is an absence of objective and fair benchmark that encompass most chemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry. It also includes ChemData, a dataset specifically designed for instruction tuning, and ChemBench, a robust benchmark covering nine essential chemistry tasks. ChemLLM is adept at performing various tasks across chemical disciplines with fluid dialogue interaction. Notably, ChemLLM achieves results comparable to GPT-4 on the core chemical tasks and demonstrates competitive performance with LLMs of similar size in general scenarios. ChemLLM paves a new path for exploration in chemical studies, and our method of incorporating structured chemical knowledge into dialogue systems sets a new standard for developing LLMs in various scientific fields. Codes, Datasets, and Model weights are publicly accessible at https://hf.co/AI4Chem</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2925761657
source Free E- Journals
subjects Chemistry
Large language models
Molecular properties
Structured data
title ChemLLM: A Chemical Large Language Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ChemLLM:%20A%20Chemical%20Large%20Language%20Model&rft.jtitle=arXiv.org&rft.au=Zhang,%20Di&rft.date=2024-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2925761657%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925761657&rft_id=info:pmid/&rfr_iscdi=true