Deep learning methods on chest x-ray radiography for detection and classification of thoracic disease: A survey

Many medical images processing tasks, including chest radiography, have recently been demonstrated to be significantly improved by AI researchers who have used deep learning, particularly CNN. To help radiologists diagnose thoracic disorders, they are required to assist. Determining the presence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shetty, Roshan, Sarappadi, Prasad Narasimha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2742
creator Shetty, Roshan
Sarappadi, Prasad Narasimha
description Many medical images processing tasks, including chest radiography, have recently been demonstrated to be significantly improved by AI researchers who have used deep learning, particularly CNN. To help radiologists diagnose thoracic disorders, they are required to assist. Determining the presence of one or two thoracic diseases using deep learning models was the driving force behind an effort to construct a real-time, multi-thoracic disease detection and classification model. In this article, we will review breakthrough applications built with deep learning models such as CNNs to detect and classify multiple pathologies in one exam on Chest radiography. Also, we will discuss important design factors and future trends in computer aided diagnosis of multi-disease classification problems in Chest Radiology.
doi_str_mv 10.1063/5.0184528
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2925734248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925734248</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1688-f3b459be2be1b50ff953ee505d16241ac6774102ad74dbeb20e9231228c87ee13</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTA1z0nGXalPKLhRcDdkkps2pZ2MyVScf-9ou7pw-Djn3IPQNSUzSkp-J2eEaiGZPkETKiUtVEnLUzQhpBIFE_zzHF3kvCGEVUrpCYoPAB3egkltaFd4B_06uoxji-0aco9_imQGnIwLcZVMtx6wjwk76MH2YaRM67DdmpyDD9b8S9Hj0SQZGyx2IYPJcI_nOO_TNwyX6MybbYar452ij6fH98VLsXx7fl3Ml0VHS60LzxshqwZYA7SRxPtKcgBJpKMlE9TYUilBCTNOCddAwwhUjFPGtNUKgPIpujn4dil-7cdP6k3cp3aMrFnFpOKCCT1Stwcq29D_t6-7FHYmDTUl9d-gtayPg_JfSf1ocg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2925734248</pqid></control><display><type>conference_proceeding</type><title>Deep learning methods on chest x-ray radiography for detection and classification of thoracic disease: A survey</title><source>AIP Journals Complete</source><creator>Shetty, Roshan ; Sarappadi, Prasad Narasimha</creator><contributor>Kumar, Anuj ; Begum, Naziya ; Iyer, Sailesh ; Balamuralitharan, S.</contributor><creatorcontrib>Shetty, Roshan ; Sarappadi, Prasad Narasimha ; Kumar, Anuj ; Begum, Naziya ; Iyer, Sailesh ; Balamuralitharan, S.</creatorcontrib><description>Many medical images processing tasks, including chest radiography, have recently been demonstrated to be significantly improved by AI researchers who have used deep learning, particularly CNN. To help radiologists diagnose thoracic disorders, they are required to assist. Determining the presence of one or two thoracic diseases using deep learning models was the driving force behind an effort to construct a real-time, multi-thoracic disease detection and classification model. In this article, we will review breakthrough applications built with deep learning models such as CNNs to detect and classify multiple pathologies in one exam on Chest radiography. Also, we will discuss important design factors and future trends in computer aided diagnosis of multi-disease classification problems in Chest Radiology.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0184528</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Deep learning ; Design factors ; Machine learning ; Medical imaging ; X-ray radiography</subject><ispartof>AIP conference proceedings, 2024, Vol.2742 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0184528$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Kumar, Anuj</contributor><contributor>Begum, Naziya</contributor><contributor>Iyer, Sailesh</contributor><contributor>Balamuralitharan, S.</contributor><creatorcontrib>Shetty, Roshan</creatorcontrib><creatorcontrib>Sarappadi, Prasad Narasimha</creatorcontrib><title>Deep learning methods on chest x-ray radiography for detection and classification of thoracic disease: A survey</title><title>AIP conference proceedings</title><description>Many medical images processing tasks, including chest radiography, have recently been demonstrated to be significantly improved by AI researchers who have used deep learning, particularly CNN. To help radiologists diagnose thoracic disorders, they are required to assist. Determining the presence of one or two thoracic diseases using deep learning models was the driving force behind an effort to construct a real-time, multi-thoracic disease detection and classification model. In this article, we will review breakthrough applications built with deep learning models such as CNNs to detect and classify multiple pathologies in one exam on Chest radiography. Also, we will discuss important design factors and future trends in computer aided diagnosis of multi-disease classification problems in Chest Radiology.</description><subject>Classification</subject><subject>Deep learning</subject><subject>Design factors</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>X-ray radiography</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTA1z0nGXalPKLhRcDdkkps2pZ2MyVScf-9ou7pw-Djn3IPQNSUzSkp-J2eEaiGZPkETKiUtVEnLUzQhpBIFE_zzHF3kvCGEVUrpCYoPAB3egkltaFd4B_06uoxji-0aco9_imQGnIwLcZVMtx6wjwk76MH2YaRM67DdmpyDD9b8S9Hj0SQZGyx2IYPJcI_nOO_TNwyX6MybbYar452ij6fH98VLsXx7fl3Ml0VHS60LzxshqwZYA7SRxPtKcgBJpKMlE9TYUilBCTNOCddAwwhUjFPGtNUKgPIpujn4dil-7cdP6k3cp3aMrFnFpOKCCT1Stwcq29D_t6-7FHYmDTUl9d-gtayPg_JfSf1ocg</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Shetty, Roshan</creator><creator>Sarappadi, Prasad Narasimha</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240213</creationdate><title>Deep learning methods on chest x-ray radiography for detection and classification of thoracic disease: A survey</title><author>Shetty, Roshan ; Sarappadi, Prasad Narasimha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1688-f3b459be2be1b50ff953ee505d16241ac6774102ad74dbeb20e9231228c87ee13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Deep learning</topic><topic>Design factors</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>X-ray radiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shetty, Roshan</creatorcontrib><creatorcontrib>Sarappadi, Prasad Narasimha</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shetty, Roshan</au><au>Sarappadi, Prasad Narasimha</au><au>Kumar, Anuj</au><au>Begum, Naziya</au><au>Iyer, Sailesh</au><au>Balamuralitharan, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep learning methods on chest x-ray radiography for detection and classification of thoracic disease: A survey</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-13</date><risdate>2024</risdate><volume>2742</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Many medical images processing tasks, including chest radiography, have recently been demonstrated to be significantly improved by AI researchers who have used deep learning, particularly CNN. To help radiologists diagnose thoracic disorders, they are required to assist. Determining the presence of one or two thoracic diseases using deep learning models was the driving force behind an effort to construct a real-time, multi-thoracic disease detection and classification model. In this article, we will review breakthrough applications built with deep learning models such as CNNs to detect and classify multiple pathologies in one exam on Chest radiography. Also, we will discuss important design factors and future trends in computer aided diagnosis of multi-disease classification problems in Chest Radiology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184528</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2742 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2925734248
source AIP Journals Complete
subjects Classification
Deep learning
Design factors
Machine learning
Medical imaging
X-ray radiography
title Deep learning methods on chest x-ray radiography for detection and classification of thoracic disease: A survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20learning%20methods%20on%20chest%20x-ray%20radiography%20for%20detection%20and%20classification%20of%20thoracic%20disease:%20A%20survey&rft.btitle=AIP%20conference%20proceedings&rft.au=Shetty,%20Roshan&rft.date=2024-02-13&rft.volume=2742&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0184528&rft_dat=%3Cproquest_scita%3E2925734248%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925734248&rft_id=info:pmid/&rfr_iscdi=true