Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy

We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2024-03, Vol.62 (3), p.711-760
Hauptverfasser: Melgaard, M., Syrjanen, V. J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 3
container_start_page 711
container_title Journal of mathematical chemistry
container_volume 62
creator Melgaard, M.
Syrjanen, V. J. J.
description We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.
doi_str_mv 10.1007/s10910-023-01557-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925544285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925544285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3ab2520168c01963ff073730d32c4722d8b101afd04d2855cbfc8fb9bac1a0823</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMoeB19AVcBNwpGK0mnO1nKMP7ggIvRdUink9sZupM26QvTO9_BZ_GFfBJz7QF3LoqC4nyHqjoIPafwhgJ0bwsFRYEA4wSoEB1pH6ADFR0jUqruIToAE4qoTtHH6EkptwCgZCsP6NfN4uyazYTNsuR0F2azhhRxsaObHfYpY4PHrc9heI3LEiIZXCxh3fDnNMbfP37ejGbG9zPiT9Ge8Wq3ji7lDYeITcTubnX5PH0ZUzzFUG3nV3g2x-jWYLEPbhqqrha2aZpCdCZXyI4mHh2xKWc37Xu56PJxe4oeeTMV9-y-X6Bv76--Xn4k118-fLp8d00sp81KuOmZYEBbaYGqlnsPHe84DJzZpmNskD0FavwAzcCkELb3Vvpe9cZSA5LxC_Ri962v-X5yZdW36XQ-pGimmBBNU7GqYrvK5lRKdl4vuf4xb5qCPsej93h0jUf_jUe3FeI7VKq4Xpn_Wf-H-gMVSpfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925544285</pqid></control><display><type>article</type><title>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Melgaard, M. ; Syrjanen, V. J. J.</creator><creatorcontrib>Melgaard, M. ; Syrjanen, V. J. J.</creatorcontrib><description>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-023-01557-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Chemistry ; Chemistry and Materials Science ; Correlation ; Density functional theory ; Exchanging ; Magnetic fields ; Math. Applications in Chemistry ; Mathematical analysis ; Original Paper ; Particle density (concentration) ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2024-03, Vol.62 (3), p.711-760</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3ab2520168c01963ff073730d32c4722d8b101afd04d2855cbfc8fb9bac1a0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-023-01557-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-023-01557-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Melgaard, M.</creatorcontrib><creatorcontrib>Syrjanen, V. J. J.</creatorcontrib><title>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation</subject><subject>Density functional theory</subject><subject>Exchanging</subject><subject>Magnetic fields</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Particle density (concentration)</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc2KFTEQhYMoeB19AVcBNwpGK0mnO1nKMP7ggIvRdUink9sZupM26QvTO9_BZ_GFfBJz7QF3LoqC4nyHqjoIPafwhgJ0bwsFRYEA4wSoEB1pH6ADFR0jUqruIToAE4qoTtHH6EkptwCgZCsP6NfN4uyazYTNsuR0F2azhhRxsaObHfYpY4PHrc9heI3LEiIZXCxh3fDnNMbfP37ejGbG9zPiT9Ge8Wq3ji7lDYeITcTubnX5PH0ZUzzFUG3nV3g2x-jWYLEPbhqqrha2aZpCdCZXyI4mHh2xKWc37Xu56PJxe4oeeTMV9-y-X6Bv76--Xn4k118-fLp8d00sp81KuOmZYEBbaYGqlnsPHe84DJzZpmNskD0FavwAzcCkELb3Vvpe9cZSA5LxC_Ri962v-X5yZdW36XQ-pGimmBBNU7GqYrvK5lRKdl4vuf4xb5qCPsej93h0jUf_jUe3FeI7VKq4Xpn_Wf-H-gMVSpfy</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Melgaard, M.</creator><creator>Syrjanen, V. J. J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</title><author>Melgaard, M. ; Syrjanen, V. J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3ab2520168c01963ff073730d32c4722d8b101afd04d2855cbfc8fb9bac1a0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation</topic><topic>Density functional theory</topic><topic>Exchanging</topic><topic>Magnetic fields</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Particle density (concentration)</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melgaard, M.</creatorcontrib><creatorcontrib>Syrjanen, V. J. J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melgaard, M.</au><au>Syrjanen, V. J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>62</volume><issue>3</issue><spage>711</spage><epage>760</epage><pages>711-760</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-023-01557-6</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2024-03, Vol.62 (3), p.711-760
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2925544285
source SpringerLink Journals - AutoHoldings
subjects Approximation
Chemistry
Chemistry and Materials Science
Correlation
Density functional theory
Exchanging
Magnetic fields
Math. Applications in Chemistry
Mathematical analysis
Original Paper
Particle density (concentration)
Physical Chemistry
Theoretical and Computational Chemistry
title Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20approximation%20scheme%20for%20a%20hybrid,%20spin-density%20Kohn%E2%80%93Sham%20density-functional%20theory%20in%20an%20external%20(nonuniform)%20magnetic%20field%20and%20a%20collinear%20exchange-correlation%20energy&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Melgaard,%20M.&rft.date=2024-03-01&rft.volume=62&rft.issue=3&rft.spage=711&rft.epage=760&rft.pages=711-760&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-023-01557-6&rft_dat=%3Cproquest_cross%3E2925544285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925544285&rft_id=info:pmid/&rfr_iscdi=true