Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy
We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulati...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2024-03, Vol.62 (3), p.711-760 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 760 |
---|---|
container_issue | 3 |
container_start_page | 711 |
container_title | Journal of mathematical chemistry |
container_volume | 62 |
creator | Melgaard, M. Syrjanen, V. J. J. |
description | We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian. |
doi_str_mv | 10.1007/s10910-023-01557-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925544285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925544285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3ab2520168c01963ff073730d32c4722d8b101afd04d2855cbfc8fb9bac1a0823</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMoeB19AVcBNwpGK0mnO1nKMP7ggIvRdUink9sZupM26QvTO9_BZ_GFfBJz7QF3LoqC4nyHqjoIPafwhgJ0bwsFRYEA4wSoEB1pH6ADFR0jUqruIToAE4qoTtHH6EkptwCgZCsP6NfN4uyazYTNsuR0F2azhhRxsaObHfYpY4PHrc9heI3LEiIZXCxh3fDnNMbfP37ejGbG9zPiT9Ge8Wq3ji7lDYeITcTubnX5PH0ZUzzFUG3nV3g2x-jWYLEPbhqqrha2aZpCdCZXyI4mHh2xKWc37Xu56PJxe4oeeTMV9-y-X6Bv76--Xn4k118-fLp8d00sp81KuOmZYEBbaYGqlnsPHe84DJzZpmNskD0FavwAzcCkELb3Vvpe9cZSA5LxC_Ri962v-X5yZdW36XQ-pGimmBBNU7GqYrvK5lRKdl4vuf4xb5qCPsej93h0jUf_jUe3FeI7VKq4Xpn_Wf-H-gMVSpfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925544285</pqid></control><display><type>article</type><title>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Melgaard, M. ; Syrjanen, V. J. J.</creator><creatorcontrib>Melgaard, M. ; Syrjanen, V. J. J.</creatorcontrib><description>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-023-01557-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Chemistry ; Chemistry and Materials Science ; Correlation ; Density functional theory ; Exchanging ; Magnetic fields ; Math. Applications in Chemistry ; Mathematical analysis ; Original Paper ; Particle density (concentration) ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2024-03, Vol.62 (3), p.711-760</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3ab2520168c01963ff073730d32c4722d8b101afd04d2855cbfc8fb9bac1a0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-023-01557-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-023-01557-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Melgaard, M.</creatorcontrib><creatorcontrib>Syrjanen, V. J. J.</creatorcontrib><title>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation</subject><subject>Density functional theory</subject><subject>Exchanging</subject><subject>Magnetic fields</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Particle density (concentration)</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc2KFTEQhYMoeB19AVcBNwpGK0mnO1nKMP7ggIvRdUink9sZupM26QvTO9_BZ_GFfBJz7QF3LoqC4nyHqjoIPafwhgJ0bwsFRYEA4wSoEB1pH6ADFR0jUqruIToAE4qoTtHH6EkptwCgZCsP6NfN4uyazYTNsuR0F2azhhRxsaObHfYpY4PHrc9heI3LEiIZXCxh3fDnNMbfP37ejGbG9zPiT9Ge8Wq3ji7lDYeITcTubnX5PH0ZUzzFUG3nV3g2x-jWYLEPbhqqrha2aZpCdCZXyI4mHh2xKWc37Xu56PJxe4oeeTMV9-y-X6Bv76--Xn4k118-fLp8d00sp81KuOmZYEBbaYGqlnsPHe84DJzZpmNskD0FavwAzcCkELb3Vvpe9cZSA5LxC_Ri962v-X5yZdW36XQ-pGimmBBNU7GqYrvK5lRKdl4vuf4xb5qCPsej93h0jUf_jUe3FeI7VKq4Xpn_Wf-H-gMVSpfy</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Melgaard, M.</creator><creator>Syrjanen, V. J. J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</title><author>Melgaard, M. ; Syrjanen, V. J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3ab2520168c01963ff073730d32c4722d8b101afd04d2855cbfc8fb9bac1a0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation</topic><topic>Density functional theory</topic><topic>Exchanging</topic><topic>Magnetic fields</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Particle density (concentration)</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melgaard, M.</creatorcontrib><creatorcontrib>Syrjanen, V. J. J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melgaard, M.</au><au>Syrjanen, V. J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>62</volume><issue>3</issue><spage>711</spage><epage>760</epage><pages>711-760</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-023-01557-6</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2024-03, Vol.62 (3), p.711-760 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_2925544285 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Chemistry Chemistry and Materials Science Correlation Density functional theory Exchanging Magnetic fields Math. Applications in Chemistry Mathematical analysis Original Paper Particle density (concentration) Physical Chemistry Theoretical and Computational Chemistry |
title | Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20approximation%20scheme%20for%20a%20hybrid,%20spin-density%20Kohn%E2%80%93Sham%20density-functional%20theory%20in%20an%20external%20(nonuniform)%20magnetic%20field%20and%20a%20collinear%20exchange-correlation%20energy&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Melgaard,%20M.&rft.date=2024-03-01&rft.volume=62&rft.issue=3&rft.spage=711&rft.epage=760&rft.pages=711-760&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-023-01557-6&rft_dat=%3Cproquest_cross%3E2925544285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925544285&rft_id=info:pmid/&rfr_iscdi=true |