Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets
We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2024-03, Vol.173 (3-4), p.1233-1271 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1271 |
---|---|
container_issue | 3-4 |
container_start_page | 1233 |
container_title | Manuscripta mathematica |
container_volume | 173 |
creator | Li, Yao |
description | We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices. |
doi_str_mv | 10.1007/s00229-023-01487-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925544205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925544205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-41838b23368eb1917d7324169f7efb400610817da63c938acf6bca0ad9e5884f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaWWBv8l9hZogooUgUbWFuTxG5TpXGxk0rdcQduyEnqEiR2rEb65r0Z6UPomtFbRqm6i5RyXhDKBaFMakX4CZowKThhSmenaJL2GeE5Y-foIsY1TZRQYoJgBr1d-tC4poK-8R32Ds8h1DZ8f369QIDYbFbQ4X5lfdjjXQM4tn5rsRu66ihEvIN2sDVuEuR7aNs99kc_RdH28RKdOWijvfqdU_T--PA2m5PF69Pz7H5BKq5oTyTTQpdciFzbkhVM1UpwyfLCKetKSWnOqE4p5KIqhIbK5WUFFOrCZlpLJ6boZry7Df5jsLE3az-ELr00vOBZJiWnWaL4SFXBxxisM9vQbCDsDaPmWKUZqzSpSvNTpeFJEqMUE9wtbfg7_Y91AJBjeCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925544205</pqid></control><display><type>article</type><title>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Yao</creator><creatorcontrib>Li, Yao</creatorcontrib><description>We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-023-01487-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Existence theorems ; Filtration ; Geometry ; Lattices ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups ; Uniqueness theorems</subject><ispartof>Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.1233-1271</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-41838b23368eb1917d7324169f7efb400610817da63c938acf6bca0ad9e5884f3</cites><orcidid>0000-0001-8043-8712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-023-01487-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-023-01487-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, Yao</creatorcontrib><title>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Existence theorems</subject><subject>Filtration</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><subject>Uniqueness theorems</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAVaWWBv8l9hZogooUgUbWFuTxG5TpXGxk0rdcQduyEnqEiR2rEb65r0Z6UPomtFbRqm6i5RyXhDKBaFMakX4CZowKThhSmenaJL2GeE5Y-foIsY1TZRQYoJgBr1d-tC4poK-8R32Ds8h1DZ8f369QIDYbFbQ4X5lfdjjXQM4tn5rsRu66ihEvIN2sDVuEuR7aNs99kc_RdH28RKdOWijvfqdU_T--PA2m5PF69Pz7H5BKq5oTyTTQpdciFzbkhVM1UpwyfLCKetKSWnOqE4p5KIqhIbK5WUFFOrCZlpLJ6boZry7Df5jsLE3az-ELr00vOBZJiWnWaL4SFXBxxisM9vQbCDsDaPmWKUZqzSpSvNTpeFJEqMUE9wtbfg7_Y91AJBjeCw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Li, Yao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8043-8712</orcidid></search><sort><creationdate>20240301</creationdate><title>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</title><author>Li, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-41838b23368eb1917d7324169f7efb400610817da63c938acf6bca0ad9e5884f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Existence theorems</topic><topic>Filtration</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yao</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>173</volume><issue>3-4</issue><spage>1233</spage><epage>1271</epage><pages>1233-1271</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-023-01487-2</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-8043-8712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.1233-1271 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2925544205 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Existence theorems Filtration Geometry Lattices Lie Groups Mathematics Mathematics and Statistics Number Theory Topological Groups Uniqueness theorems |
title | Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorification%20of%20Harder%E2%80%93Narasimhan%20theory%20via%20slope%20functions%20valued%20in%20totally%20ordered%20sets&rft.jtitle=Manuscripta%20mathematica&rft.au=Li,%20Yao&rft.date=2024-03-01&rft.volume=173&rft.issue=3-4&rft.spage=1233&rft.epage=1271&rft.pages=1233-1271&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-023-01487-2&rft_dat=%3Cproquest_cross%3E2925544205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925544205&rft_id=info:pmid/&rfr_iscdi=true |