Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets

We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-03, Vol.173 (3-4), p.1233-1271
1. Verfasser: Li, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1271
container_issue 3-4
container_start_page 1233
container_title Manuscripta mathematica
container_volume 173
creator Li, Yao
description We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.
doi_str_mv 10.1007/s00229-023-01487-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925544205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925544205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-41838b23368eb1917d7324169f7efb400610817da63c938acf6bca0ad9e5884f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaWWBv8l9hZogooUgUbWFuTxG5TpXGxk0rdcQduyEnqEiR2rEb65r0Z6UPomtFbRqm6i5RyXhDKBaFMakX4CZowKThhSmenaJL2GeE5Y-foIsY1TZRQYoJgBr1d-tC4poK-8R32Ds8h1DZ8f369QIDYbFbQ4X5lfdjjXQM4tn5rsRu66ihEvIN2sDVuEuR7aNs99kc_RdH28RKdOWijvfqdU_T--PA2m5PF69Pz7H5BKq5oTyTTQpdciFzbkhVM1UpwyfLCKetKSWnOqE4p5KIqhIbK5WUFFOrCZlpLJ6boZry7Df5jsLE3az-ELr00vOBZJiWnWaL4SFXBxxisM9vQbCDsDaPmWKUZqzSpSvNTpeFJEqMUE9wtbfg7_Y91AJBjeCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925544205</pqid></control><display><type>article</type><title>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Yao</creator><creatorcontrib>Li, Yao</creatorcontrib><description>We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-023-01487-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Existence theorems ; Filtration ; Geometry ; Lattices ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups ; Uniqueness theorems</subject><ispartof>Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.1233-1271</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-41838b23368eb1917d7324169f7efb400610817da63c938acf6bca0ad9e5884f3</cites><orcidid>0000-0001-8043-8712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-023-01487-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-023-01487-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, Yao</creatorcontrib><title>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Existence theorems</subject><subject>Filtration</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><subject>Uniqueness theorems</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAVaWWBv8l9hZogooUgUbWFuTxG5TpXGxk0rdcQduyEnqEiR2rEb65r0Z6UPomtFbRqm6i5RyXhDKBaFMakX4CZowKThhSmenaJL2GeE5Y-foIsY1TZRQYoJgBr1d-tC4poK-8R32Ds8h1DZ8f369QIDYbFbQ4X5lfdjjXQM4tn5rsRu66ihEvIN2sDVuEuR7aNs99kc_RdH28RKdOWijvfqdU_T--PA2m5PF69Pz7H5BKq5oTyTTQpdciFzbkhVM1UpwyfLCKetKSWnOqE4p5KIqhIbK5WUFFOrCZlpLJ6boZry7Df5jsLE3az-ELr00vOBZJiWnWaL4SFXBxxisM9vQbCDsDaPmWKUZqzSpSvNTpeFJEqMUE9wtbfg7_Y91AJBjeCw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Li, Yao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8043-8712</orcidid></search><sort><creationdate>20240301</creationdate><title>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</title><author>Li, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-41838b23368eb1917d7324169f7efb400610817da63c938acf6bca0ad9e5884f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Existence theorems</topic><topic>Filtration</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yao</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>173</volume><issue>3-4</issue><spage>1233</spage><epage>1271</epage><pages>1233-1271</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We introduce a categorical construction of Harder–Narasimhan filtration via a slope method which does not need a degree function. With a theorem of existence and uniqueness of Harder–Narasimhan filtration in our categorical setting, we give a categorical interpretation of Stuhler–Grayson filtration in the case of not necessarily Hermitian normed lattices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-023-01487-2</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-8043-8712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.1233-1271
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2925544205
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Existence theorems
Filtration
Geometry
Lattices
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
Uniqueness theorems
title Categorification of Harder–Narasimhan theory via slope functions valued in totally ordered sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorification%20of%20Harder%E2%80%93Narasimhan%20theory%20via%20slope%20functions%20valued%20in%20totally%20ordered%20sets&rft.jtitle=Manuscripta%20mathematica&rft.au=Li,%20Yao&rft.date=2024-03-01&rft.volume=173&rft.issue=3-4&rft.spage=1233&rft.epage=1271&rft.pages=1233-1271&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-023-01487-2&rft_dat=%3Cproquest_cross%3E2925544205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925544205&rft_id=info:pmid/&rfr_iscdi=true