A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries

All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (7), p.4231-4239
Hauptverfasser: Wang, Zhen, Tan, Jiewen, Cui, Jiawu, Xie, Keyu, Bai, Yunfei, Jia, Zhanhui, Gao, Xiangwen, Wu, Yuping, Tang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4239
container_issue 7
container_start_page 4231
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Wang, Zhen
Tan, Jiewen
Cui, Jiawu
Xie, Keyu
Bai, Yunfei
Jia, Zhanhui
Gao, Xiangwen
Wu, Yuping
Tang, Wei
description All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future. A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.
doi_str_mv 10.1039/d3ta07352a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2925476428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925476428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</originalsourceid><addsrcrecordid>eNpFkc1LxDAQxYMouKx78S4UvAnVtGma9FjWT1jwsp5Lmk7dLElTk1To1b_c6Mo6l3k8fjMDbxC6zPBthkl115EgMCM0FydokWOKU1ZU5elRc36OVt7vcSyOcVlVC_RVJ4P9BJ0IPxsDwSkpdGImHZQWMzjoEmnNaL0KkIAGGZzVc9S9dclOve_SEVzURgwSEmFaBUNIA5hoizC56GmdeqtVl_og4qBWYacmk7QiBHAK_AU664X2sPrrS_T2-LBdP6eb16eXdb1JZc6zkHLMGZEcJM2KvGwlBdYzBpTwnPU4K6qK0UJQhgWtWMkJ6VpalnmVl0VfYMrIEl0f9o7OfkzgQ7O3kxviySZStGBlkfNI3Rwo6az3DvpmdMoINzcZbn5ibu7Jtv6NuY7w1QF2Xh65_zeQb9gyez0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925476428</pqid></control><display><type>article</type><title>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Zhen ; Tan, Jiewen ; Cui, Jiawu ; Xie, Keyu ; Bai, Yunfei ; Jia, Zhanhui ; Gao, Xiangwen ; Wu, Yuping ; Tang, Wei</creator><creatorcontrib>Wang, Zhen ; Tan, Jiewen ; Cui, Jiawu ; Xie, Keyu ; Bai, Yunfei ; Jia, Zhanhui ; Gao, Xiangwen ; Wu, Yuping ; Tang, Wei</creatorcontrib><description>All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future. A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07352a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Asymmetry ; Buffer layers ; Cathodes ; Electrolytes ; Electrolytic cells ; Energy storage ; Ethylene oxide ; Interface stability ; Lithium ; Lithium batteries ; Mechanical properties ; Multilayers ; Polyethylene oxide ; Polymers ; Propylene ; Room temperature ; Solid electrolytes ; Solid state</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (7), p.4231-4239</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</citedby><cites>FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</cites><orcidid>0000-0003-2954-0919 ; 0009-0009-7079-7522 ; 0000-0002-0833-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Tan, Jiewen</creatorcontrib><creatorcontrib>Cui, Jiawu</creatorcontrib><creatorcontrib>Xie, Keyu</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Jia, Zhanhui</creatorcontrib><creatorcontrib>Gao, Xiangwen</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><title>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future. A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.</description><subject>Ambient temperature</subject><subject>Asymmetry</subject><subject>Buffer layers</subject><subject>Cathodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Ethylene oxide</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Mechanical properties</subject><subject>Multilayers</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>Propylene</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LxDAQxYMouKx78S4UvAnVtGma9FjWT1jwsp5Lmk7dLElTk1To1b_c6Mo6l3k8fjMDbxC6zPBthkl115EgMCM0FydokWOKU1ZU5elRc36OVt7vcSyOcVlVC_RVJ4P9BJ0IPxsDwSkpdGImHZQWMzjoEmnNaL0KkIAGGZzVc9S9dclOve_SEVzURgwSEmFaBUNIA5hoizC56GmdeqtVl_og4qBWYacmk7QiBHAK_AU664X2sPrrS_T2-LBdP6eb16eXdb1JZc6zkHLMGZEcJM2KvGwlBdYzBpTwnPU4K6qK0UJQhgWtWMkJ6VpalnmVl0VfYMrIEl0f9o7OfkzgQ7O3kxviySZStGBlkfNI3Rwo6az3DvpmdMoINzcZbn5ibu7Jtv6NuY7w1QF2Xh65_zeQb9gyez0</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Wang, Zhen</creator><creator>Tan, Jiewen</creator><creator>Cui, Jiawu</creator><creator>Xie, Keyu</creator><creator>Bai, Yunfei</creator><creator>Jia, Zhanhui</creator><creator>Gao, Xiangwen</creator><creator>Wu, Yuping</creator><creator>Tang, Wei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2954-0919</orcidid><orcidid>https://orcid.org/0009-0009-7079-7522</orcidid><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid></search><sort><creationdate>20240213</creationdate><title>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</title><author>Wang, Zhen ; Tan, Jiewen ; Cui, Jiawu ; Xie, Keyu ; Bai, Yunfei ; Jia, Zhanhui ; Gao, Xiangwen ; Wu, Yuping ; Tang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Asymmetry</topic><topic>Buffer layers</topic><topic>Cathodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Ethylene oxide</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Mechanical properties</topic><topic>Multilayers</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>Propylene</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Tan, Jiewen</creatorcontrib><creatorcontrib>Cui, Jiawu</creatorcontrib><creatorcontrib>Xie, Keyu</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Jia, Zhanhui</creatorcontrib><creatorcontrib>Gao, Xiangwen</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Tan, Jiewen</au><au>Cui, Jiawu</au><au>Xie, Keyu</au><au>Bai, Yunfei</au><au>Jia, Zhanhui</au><au>Gao, Xiangwen</au><au>Wu, Yuping</au><au>Tang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-13</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><spage>4231</spage><epage>4239</epage><pages>4231-4239</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future. A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta07352a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2954-0919</orcidid><orcidid>https://orcid.org/0009-0009-7079-7522</orcidid><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (7), p.4231-4239
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2925476428
source Royal Society Of Chemistry Journals 2008-
subjects Ambient temperature
Asymmetry
Buffer layers
Cathodes
Electrolytes
Electrolytic cells
Energy storage
Ethylene oxide
Interface stability
Lithium
Lithium batteries
Mechanical properties
Multilayers
Polyethylene oxide
Polymers
Propylene
Room temperature
Solid electrolytes
Solid state
title A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20asymmetrical%20multilayered%20composite%20electrolyte%20for%20high-performance%20ambient-temperature%20all-solid-state%20lithium%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Zhen&rft.date=2024-02-13&rft.volume=12&rft.issue=7&rft.spage=4231&rft.epage=4239&rft.pages=4231-4239&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07352a&rft_dat=%3Cproquest_rsc_p%3E2925476428%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925476428&rft_id=info:pmid/&rfr_iscdi=true