A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries
All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (7), p.4231-4239 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4239 |
---|---|
container_issue | 7 |
container_start_page | 4231 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Wang, Zhen Tan, Jiewen Cui, Jiawu Xie, Keyu Bai, Yunfei Jia, Zhanhui Gao, Xiangwen Wu, Yuping Tang, Wei |
description | All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li
6.4
La
3
Zr
1.4
Ta
0.6
O
12
is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO
4
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future.
A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode. |
doi_str_mv | 10.1039/d3ta07352a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2925476428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925476428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</originalsourceid><addsrcrecordid>eNpFkc1LxDAQxYMouKx78S4UvAnVtGma9FjWT1jwsp5Lmk7dLElTk1To1b_c6Mo6l3k8fjMDbxC6zPBthkl115EgMCM0FydokWOKU1ZU5elRc36OVt7vcSyOcVlVC_RVJ4P9BJ0IPxsDwSkpdGImHZQWMzjoEmnNaL0KkIAGGZzVc9S9dclOve_SEVzURgwSEmFaBUNIA5hoizC56GmdeqtVl_og4qBWYacmk7QiBHAK_AU664X2sPrrS_T2-LBdP6eb16eXdb1JZc6zkHLMGZEcJM2KvGwlBdYzBpTwnPU4K6qK0UJQhgWtWMkJ6VpalnmVl0VfYMrIEl0f9o7OfkzgQ7O3kxviySZStGBlkfNI3Rwo6az3DvpmdMoINzcZbn5ibu7Jtv6NuY7w1QF2Xh65_zeQb9gyez0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925476428</pqid></control><display><type>article</type><title>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Zhen ; Tan, Jiewen ; Cui, Jiawu ; Xie, Keyu ; Bai, Yunfei ; Jia, Zhanhui ; Gao, Xiangwen ; Wu, Yuping ; Tang, Wei</creator><creatorcontrib>Wang, Zhen ; Tan, Jiewen ; Cui, Jiawu ; Xie, Keyu ; Bai, Yunfei ; Jia, Zhanhui ; Gao, Xiangwen ; Wu, Yuping ; Tang, Wei</creatorcontrib><description>All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li
6.4
La
3
Zr
1.4
Ta
0.6
O
12
is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO
4
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future.
A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07352a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Asymmetry ; Buffer layers ; Cathodes ; Electrolytes ; Electrolytic cells ; Energy storage ; Ethylene oxide ; Interface stability ; Lithium ; Lithium batteries ; Mechanical properties ; Multilayers ; Polyethylene oxide ; Polymers ; Propylene ; Room temperature ; Solid electrolytes ; Solid state</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (7), p.4231-4239</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</citedby><cites>FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</cites><orcidid>0000-0003-2954-0919 ; 0009-0009-7079-7522 ; 0000-0002-0833-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Tan, Jiewen</creatorcontrib><creatorcontrib>Cui, Jiawu</creatorcontrib><creatorcontrib>Xie, Keyu</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Jia, Zhanhui</creatorcontrib><creatorcontrib>Gao, Xiangwen</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><title>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li
6.4
La
3
Zr
1.4
Ta
0.6
O
12
is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO
4
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future.
A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.</description><subject>Ambient temperature</subject><subject>Asymmetry</subject><subject>Buffer layers</subject><subject>Cathodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Ethylene oxide</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Mechanical properties</subject><subject>Multilayers</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>Propylene</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LxDAQxYMouKx78S4UvAnVtGma9FjWT1jwsp5Lmk7dLElTk1To1b_c6Mo6l3k8fjMDbxC6zPBthkl115EgMCM0FydokWOKU1ZU5elRc36OVt7vcSyOcVlVC_RVJ4P9BJ0IPxsDwSkpdGImHZQWMzjoEmnNaL0KkIAGGZzVc9S9dclOve_SEVzURgwSEmFaBUNIA5hoizC56GmdeqtVl_og4qBWYacmk7QiBHAK_AU664X2sPrrS_T2-LBdP6eb16eXdb1JZc6zkHLMGZEcJM2KvGwlBdYzBpTwnPU4K6qK0UJQhgWtWMkJ6VpalnmVl0VfYMrIEl0f9o7OfkzgQ7O3kxviySZStGBlkfNI3Rwo6az3DvpmdMoINzcZbn5ibu7Jtv6NuY7w1QF2Xh65_zeQb9gyez0</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Wang, Zhen</creator><creator>Tan, Jiewen</creator><creator>Cui, Jiawu</creator><creator>Xie, Keyu</creator><creator>Bai, Yunfei</creator><creator>Jia, Zhanhui</creator><creator>Gao, Xiangwen</creator><creator>Wu, Yuping</creator><creator>Tang, Wei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2954-0919</orcidid><orcidid>https://orcid.org/0009-0009-7079-7522</orcidid><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid></search><sort><creationdate>20240213</creationdate><title>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</title><author>Wang, Zhen ; Tan, Jiewen ; Cui, Jiawu ; Xie, Keyu ; Bai, Yunfei ; Jia, Zhanhui ; Gao, Xiangwen ; Wu, Yuping ; Tang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-80873c8ec51426bc5e7f77e53827f01499754a570a5976833db56629264f40573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Asymmetry</topic><topic>Buffer layers</topic><topic>Cathodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Ethylene oxide</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Mechanical properties</topic><topic>Multilayers</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>Propylene</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Tan, Jiewen</creatorcontrib><creatorcontrib>Cui, Jiawu</creatorcontrib><creatorcontrib>Xie, Keyu</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Jia, Zhanhui</creatorcontrib><creatorcontrib>Gao, Xiangwen</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Tan, Jiewen</au><au>Cui, Jiawu</au><au>Xie, Keyu</au><au>Bai, Yunfei</au><au>Jia, Zhanhui</au><au>Gao, Xiangwen</au><au>Wu, Yuping</au><au>Tang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-13</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><spage>4231</spage><epage>4239</epage><pages>4231-4239</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>All-solid-state lithium batteries are considered promising next-generation devices for energy storage, but their application still faces various interfacial issues. In this work, an innovative asymmetric multi-layered solid composite electrolyte design is proposed to satisfy the distinctive demands of the cathode and anode simultaneously. A composite electrolyte consisting of poly(ethylene oxide) and Li
6.4
La
3
Zr
1.4
Ta
0.6
O
12
is employed as the intermediate layer to provide sufficient mechanical strength, while a poly(ethylene oxide) buffer layer with high flexibility contacts with the cathode and poly(propylene carbonate) polymer contacts with the anode to reduce interfacial resistance. The enhanced interfacial contact induces the formation of a dense and uniform LiF-rich cathode electrolyte interface film, and the components derived from a poly(propylene carbonate) reaction with Li promotes the solid electrolyte interphase film formation of inorganic lithium species to improve the interface stability. This ingenious design enables sustained cycling of LiFePO
4
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
based solid-state cells at room temperature, offering a promising avenue for the advancement of high-energy density and safe lithium batteries in the future.
A novel MSCE is designed by introducing a PEO layer against the cathode and a "self-sacrifice" PPC layer against the anode.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta07352a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2954-0919</orcidid><orcidid>https://orcid.org/0009-0009-7079-7522</orcidid><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (7), p.4231-4239 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2925476428 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ambient temperature Asymmetry Buffer layers Cathodes Electrolytes Electrolytic cells Energy storage Ethylene oxide Interface stability Lithium Lithium batteries Mechanical properties Multilayers Polyethylene oxide Polymers Propylene Room temperature Solid electrolytes Solid state |
title | A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20asymmetrical%20multilayered%20composite%20electrolyte%20for%20high-performance%20ambient-temperature%20all-solid-state%20lithium%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Zhen&rft.date=2024-02-13&rft.volume=12&rft.issue=7&rft.spage=4231&rft.epage=4239&rft.pages=4231-4239&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07352a&rft_dat=%3Cproquest_rsc_p%3E2925476428%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925476428&rft_id=info:pmid/&rfr_iscdi=true |