An improved self-attention for long-sequence time-series data forecasting with missing values
Long-sequence time-series data forecasting based on deep learning has been applied in many practical scenarios. However, the time-series data sequences obtained in the real world inevitably contain missing values due to the failures of sensors or network fluctuations. Current research works dedicate...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-03, Vol.36 (8), p.3921-3940 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!