A second-order tolerance analysis approach to statistical virtual assembly for rigid parts

Virtual assembly has become a popular trend in recent years and is used for various purposes, including selective assembly and adaptive tooling. Monte Carlo approaches based on Finite Element Method (FEM) simulations are commonly used for production applications. However, during the design phase, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-03, Vol.131 (1), p.437-446
Hauptverfasser: Maltauro, Mattia, Meneghello, Roberto, Concheri, Gianmaria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 1
container_start_page 437
container_title International journal of advanced manufacturing technology
container_volume 131
creator Maltauro, Mattia
Meneghello, Roberto
Concheri, Gianmaria
description Virtual assembly has become a popular trend in recent years and is used for various purposes, including selective assembly and adaptive tooling. Monte Carlo approaches based on Finite Element Method (FEM) simulations are commonly used for production applications. However, during the design phase, when testing different configurations and design options, a variational method is more suitable. This paper aims to test different implementations of the Method of System Moments applied to the second-order tolerance analysis method when actual distributions, which are non-centered and non-normal, are used as input for the simulation. The study reveals that the simulation results can significantly vary depending on the simulation settings in some cases. As a result, a series of best practices are highlighted to improve the accuracy and reliability of the simulation outcomes.
doi_str_mv 10.1007/s00170-024-13153-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925286223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925286223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-dd6ed004e8cd07aa5b6253eac305aef3fc01889edfc42b5f26cd45496f05b8613</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmWSmy1J8geBGN25CJo86ZTpTc1Oh_97oCO5cncX9zuHyEXLJ4ZoD1DcIwGtgICrGJVeSiSMy45WUTAJXx2QGQjdM1ro5JWeIm4JrrpsZeVtSDG4cPBuTD4nmsQ_JDi5QO9j-gB1Su9ul0br3cqOYbe4wd8729LNLeV_SIoZt2x9oHBNN3brzdGdTxnNyEm2P4eI35-T17vZl9cCenu8fV8sn5iSvMvNeBw9QhcZ5qK1VrRZKBuskKBuijA540yyCj64SrYpCO1-paqEjqLbRXM7J1bRb3vzYB8xmM-5T-R6NWAglGi2ELJSYKJdGxBSi2aVua9PBcDDfDs3k0BSH5sehEaUkpxIWeFiH9Df9T-sLftp1wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925286223</pqid></control><display><type>article</type><title>A second-order tolerance analysis approach to statistical virtual assembly for rigid parts</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maltauro, Mattia ; Meneghello, Roberto ; Concheri, Gianmaria</creator><creatorcontrib>Maltauro, Mattia ; Meneghello, Roberto ; Concheri, Gianmaria</creatorcontrib><description>Virtual assembly has become a popular trend in recent years and is used for various purposes, including selective assembly and adaptive tooling. Monte Carlo approaches based on Finite Element Method (FEM) simulations are commonly used for production applications. However, during the design phase, when testing different configurations and design options, a variational method is more suitable. This paper aims to test different implementations of the Method of System Moments applied to the second-order tolerance analysis method when actual distributions, which are non-centered and non-normal, are used as input for the simulation. The study reveals that the simulation results can significantly vary depending on the simulation settings in some cases. As a result, a series of best practices are highlighted to improve the accuracy and reliability of the simulation outcomes.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13153-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Advanced manufacturing technologies ; Assembly ; Best practice ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Configuration management ; Engineering ; Finite element method ; Industrial and Production Engineering ; Kinematics ; Kurtosis ; Manufacturing ; Mechanical Engineering ; Media Management ; Monte Carlo simulation ; Original Article ; Tooling</subject><ispartof>International journal of advanced manufacturing technology, 2024-03, Vol.131 (1), p.437-446</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-dd6ed004e8cd07aa5b6253eac305aef3fc01889edfc42b5f26cd45496f05b8613</cites><orcidid>0000-0002-8099-9795 ; 0000-0001-5612-5943 ; 0000-0002-8339-9306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-13153-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-13153-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Maltauro, Mattia</creatorcontrib><creatorcontrib>Meneghello, Roberto</creatorcontrib><creatorcontrib>Concheri, Gianmaria</creatorcontrib><title>A second-order tolerance analysis approach to statistical virtual assembly for rigid parts</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Virtual assembly has become a popular trend in recent years and is used for various purposes, including selective assembly and adaptive tooling. Monte Carlo approaches based on Finite Element Method (FEM) simulations are commonly used for production applications. However, during the design phase, when testing different configurations and design options, a variational method is more suitable. This paper aims to test different implementations of the Method of System Moments applied to the second-order tolerance analysis method when actual distributions, which are non-centered and non-normal, are used as input for the simulation. The study reveals that the simulation results can significantly vary depending on the simulation settings in some cases. As a result, a series of best practices are highlighted to improve the accuracy and reliability of the simulation outcomes.</description><subject>Accuracy</subject><subject>Advanced manufacturing technologies</subject><subject>Assembly</subject><subject>Best practice</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Configuration management</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Industrial and Production Engineering</subject><subject>Kinematics</subject><subject>Kurtosis</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Monte Carlo simulation</subject><subject>Original Article</subject><subject>Tooling</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmWSmy1J8geBGN25CJo86ZTpTc1Oh_97oCO5cncX9zuHyEXLJ4ZoD1DcIwGtgICrGJVeSiSMy45WUTAJXx2QGQjdM1ro5JWeIm4JrrpsZeVtSDG4cPBuTD4nmsQ_JDi5QO9j-gB1Su9ul0br3cqOYbe4wd8729LNLeV_SIoZt2x9oHBNN3brzdGdTxnNyEm2P4eI35-T17vZl9cCenu8fV8sn5iSvMvNeBw9QhcZ5qK1VrRZKBuskKBuijA540yyCj64SrYpCO1-paqEjqLbRXM7J1bRb3vzYB8xmM-5T-R6NWAglGi2ELJSYKJdGxBSi2aVua9PBcDDfDs3k0BSH5sehEaUkpxIWeFiH9Df9T-sLftp1wA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Maltauro, Mattia</creator><creator>Meneghello, Roberto</creator><creator>Concheri, Gianmaria</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8099-9795</orcidid><orcidid>https://orcid.org/0000-0001-5612-5943</orcidid><orcidid>https://orcid.org/0000-0002-8339-9306</orcidid></search><sort><creationdate>20240301</creationdate><title>A second-order tolerance analysis approach to statistical virtual assembly for rigid parts</title><author>Maltauro, Mattia ; Meneghello, Roberto ; Concheri, Gianmaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-dd6ed004e8cd07aa5b6253eac305aef3fc01889edfc42b5f26cd45496f05b8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Advanced manufacturing technologies</topic><topic>Assembly</topic><topic>Best practice</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Configuration management</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Industrial and Production Engineering</topic><topic>Kinematics</topic><topic>Kurtosis</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Monte Carlo simulation</topic><topic>Original Article</topic><topic>Tooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maltauro, Mattia</creatorcontrib><creatorcontrib>Meneghello, Roberto</creatorcontrib><creatorcontrib>Concheri, Gianmaria</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maltauro, Mattia</au><au>Meneghello, Roberto</au><au>Concheri, Gianmaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order tolerance analysis approach to statistical virtual assembly for rigid parts</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>131</volume><issue>1</issue><spage>437</spage><epage>446</epage><pages>437-446</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Virtual assembly has become a popular trend in recent years and is used for various purposes, including selective assembly and adaptive tooling. Monte Carlo approaches based on Finite Element Method (FEM) simulations are commonly used for production applications. However, during the design phase, when testing different configurations and design options, a variational method is more suitable. This paper aims to test different implementations of the Method of System Moments applied to the second-order tolerance analysis method when actual distributions, which are non-centered and non-normal, are used as input for the simulation. The study reveals that the simulation results can significantly vary depending on the simulation settings in some cases. As a result, a series of best practices are highlighted to improve the accuracy and reliability of the simulation outcomes.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13153-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8099-9795</orcidid><orcidid>https://orcid.org/0000-0001-5612-5943</orcidid><orcidid>https://orcid.org/0000-0002-8339-9306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-03, Vol.131 (1), p.437-446
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2925286223
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Advanced manufacturing technologies
Assembly
Best practice
CAE) and Design
Computer simulation
Computer-Aided Engineering (CAD
Configuration management
Engineering
Finite element method
Industrial and Production Engineering
Kinematics
Kurtosis
Manufacturing
Mechanical Engineering
Media Management
Monte Carlo simulation
Original Article
Tooling
title A second-order tolerance analysis approach to statistical virtual assembly for rigid parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20tolerance%20analysis%20approach%20to%20statistical%20virtual%20assembly%20for%20rigid%20parts&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Maltauro,%20Mattia&rft.date=2024-03-01&rft.volume=131&rft.issue=1&rft.spage=437&rft.epage=446&rft.pages=437-446&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13153-2&rft_dat=%3Cproquest_cross%3E2925286223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925286223&rft_id=info:pmid/&rfr_iscdi=true