Efficient initialization of fluxonium qubits based on auxiliary energy levels

Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Wang, Tenghui, Wu, Feng, Wang, Fei, Ma, Xizheng, Zhang, Gengyan, Chen, Jianjun, Deng, Hao, Gao, Ran, Hu, Ruizi, Lu, Ma, Song, Zhijun, Tian Xia, Make Ying, Zhan, Huijuan, Hui-Hai, Zhao, Deng, Chunqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Tenghui
Wu, Feng
Wang, Fei
Ma, Xizheng
Zhang, Gengyan
Chen, Jianjun
Deng, Hao
Gao, Ran
Hu, Ruizi
Lu, Ma
Song, Zhijun
Tian Xia
Make Ying
Zhan, Huijuan
Hui-Hai, Zhao
Deng, Chunqing
description Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wavefunctions, the sideband transitions are only enabled by multi-photon processes which requires multi-tone or strong driving. Leveraging the flux-tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a non-computational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2925285586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925285586</sourcerecordid><originalsourceid>FETCH-proquest_journals_29252855863</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_XG1DpLxcXNvUS9kVtiYvMjrU9vBx_A6QzfmbEMhNgU9RZgwfIQurIsodqBlCJj50ZruhHayMlSJGXooyI5y53m2qTBWUpP3qcrxcCvKuCdT6jSQIaUHzla9I-RG3yjCSs218oEzH9dsvWxuRxOxcu7PmGIbeeStxO1sAcJtZR1Jf67vhgvPuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925285586</pqid></control><display><type>article</type><title>Efficient initialization of fluxonium qubits based on auxiliary energy levels</title><source>Free E- Journals</source><creator>Wang, Tenghui ; Wu, Feng ; Wang, Fei ; Ma, Xizheng ; Zhang, Gengyan ; Chen, Jianjun ; Deng, Hao ; Gao, Ran ; Hu, Ruizi ; Lu, Ma ; Song, Zhijun ; Tian Xia ; Make Ying ; Zhan, Huijuan ; Hui-Hai, Zhao ; Deng, Chunqing</creator><creatorcontrib>Wang, Tenghui ; Wu, Feng ; Wang, Fei ; Ma, Xizheng ; Zhang, Gengyan ; Chen, Jianjun ; Deng, Hao ; Gao, Ran ; Hu, Ruizi ; Lu, Ma ; Song, Zhijun ; Tian Xia ; Make Ying ; Zhan, Huijuan ; Hui-Hai, Zhao ; Deng, Chunqing</creatorcontrib><description>Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wavefunctions, the sideband transitions are only enabled by multi-photon processes which requires multi-tone or strong driving. Leveraging the flux-tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a non-computational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Algorithms ; Circuits ; Energy levels ; Error correction ; Microprocessors ; Quantum electrodynamics ; Qubits (quantum computing) ; Sidebands ; Symmetry ; Wave functions</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Tenghui</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Ma, Xizheng</creatorcontrib><creatorcontrib>Zhang, Gengyan</creatorcontrib><creatorcontrib>Chen, Jianjun</creatorcontrib><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>Gao, Ran</creatorcontrib><creatorcontrib>Hu, Ruizi</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><creatorcontrib>Song, Zhijun</creatorcontrib><creatorcontrib>Tian Xia</creatorcontrib><creatorcontrib>Make Ying</creatorcontrib><creatorcontrib>Zhan, Huijuan</creatorcontrib><creatorcontrib>Hui-Hai, Zhao</creatorcontrib><creatorcontrib>Deng, Chunqing</creatorcontrib><title>Efficient initialization of fluxonium qubits based on auxiliary energy levels</title><title>arXiv.org</title><description>Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wavefunctions, the sideband transitions are only enabled by multi-photon processes which requires multi-tone or strong driving. Leveraging the flux-tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a non-computational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Circuits</subject><subject>Energy levels</subject><subject>Error correction</subject><subject>Microprocessors</subject><subject>Quantum electrodynamics</subject><subject>Qubits (quantum computing)</subject><subject>Sidebands</subject><subject>Symmetry</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_XG1DpLxcXNvUS9kVtiYvMjrU9vBx_A6QzfmbEMhNgU9RZgwfIQurIsodqBlCJj50ZruhHayMlSJGXooyI5y53m2qTBWUpP3qcrxcCvKuCdT6jSQIaUHzla9I-RG3yjCSs218oEzH9dsvWxuRxOxcu7PmGIbeeStxO1sAcJtZR1Jf67vhgvPuw</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Wang, Tenghui</creator><creator>Wu, Feng</creator><creator>Wang, Fei</creator><creator>Ma, Xizheng</creator><creator>Zhang, Gengyan</creator><creator>Chen, Jianjun</creator><creator>Deng, Hao</creator><creator>Gao, Ran</creator><creator>Hu, Ruizi</creator><creator>Lu, Ma</creator><creator>Song, Zhijun</creator><creator>Tian Xia</creator><creator>Make Ying</creator><creator>Zhan, Huijuan</creator><creator>Hui-Hai, Zhao</creator><creator>Deng, Chunqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240209</creationdate><title>Efficient initialization of fluxonium qubits based on auxiliary energy levels</title><author>Wang, Tenghui ; Wu, Feng ; Wang, Fei ; Ma, Xizheng ; Zhang, Gengyan ; Chen, Jianjun ; Deng, Hao ; Gao, Ran ; Hu, Ruizi ; Lu, Ma ; Song, Zhijun ; Tian Xia ; Make Ying ; Zhan, Huijuan ; Hui-Hai, Zhao ; Deng, Chunqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29252855863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Circuits</topic><topic>Energy levels</topic><topic>Error correction</topic><topic>Microprocessors</topic><topic>Quantum electrodynamics</topic><topic>Qubits (quantum computing)</topic><topic>Sidebands</topic><topic>Symmetry</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tenghui</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Ma, Xizheng</creatorcontrib><creatorcontrib>Zhang, Gengyan</creatorcontrib><creatorcontrib>Chen, Jianjun</creatorcontrib><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>Gao, Ran</creatorcontrib><creatorcontrib>Hu, Ruizi</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><creatorcontrib>Song, Zhijun</creatorcontrib><creatorcontrib>Tian Xia</creatorcontrib><creatorcontrib>Make Ying</creatorcontrib><creatorcontrib>Zhan, Huijuan</creatorcontrib><creatorcontrib>Hui-Hai, Zhao</creatorcontrib><creatorcontrib>Deng, Chunqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tenghui</au><au>Wu, Feng</au><au>Wang, Fei</au><au>Ma, Xizheng</au><au>Zhang, Gengyan</au><au>Chen, Jianjun</au><au>Deng, Hao</au><au>Gao, Ran</au><au>Hu, Ruizi</au><au>Lu, Ma</au><au>Song, Zhijun</au><au>Tian Xia</au><au>Make Ying</au><au>Zhan, Huijuan</au><au>Hui-Hai, Zhao</au><au>Deng, Chunqing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient initialization of fluxonium qubits based on auxiliary energy levels</atitle><jtitle>arXiv.org</jtitle><date>2024-02-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wavefunctions, the sideband transitions are only enabled by multi-photon processes which requires multi-tone or strong driving. Leveraging the flux-tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a non-computational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2925285586
source Free E- Journals
subjects Accuracy
Algorithms
Circuits
Energy levels
Error correction
Microprocessors
Quantum electrodynamics
Qubits (quantum computing)
Sidebands
Symmetry
Wave functions
title Efficient initialization of fluxonium qubits based on auxiliary energy levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20initialization%20of%20fluxonium%20qubits%20based%20on%20auxiliary%20energy%20levels&rft.jtitle=arXiv.org&rft.au=Wang,%20Tenghui&rft.date=2024-02-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2925285586%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925285586&rft_id=info:pmid/&rfr_iscdi=true