AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage

This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining high fidelity physical results in posterior states. Initially, we evaluate the surrogate mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Seabra, G S, Mücke, N T, Silva, V L S, Voskov, D, Vossepoel, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Seabra, G S
Mücke, N T
Silva, V L S
Voskov, D
Vossepoel, F
description This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO\(_2\) injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers better uncertainty quantification compared to conventional ESMDA for the case study.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2925283173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925283173</sourcerecordid><originalsourceid>FETCH-proquest_journals_29252831733</originalsourceid><addsrcrecordid>eNqNy70OgjAUhuHGxESi3MNJnEngVARHQ_ybdTdHKFhSW2jL4N3bgQtw-obnexcsQs6zpNwhrljsXJ-mKe4LzHMeMTreQOg36Vo00JAnIOfkRyry0mgg3cAUzHqS2n9hnEh72cp65mFQMoTewEUYZboACiqyr4B3byx1YsOWLSkn4nnXbHs-PaprMlgzTsL5Z28mqwM98YA5ljwrOP_v9QNo2EWr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925283173</pqid></control><display><type>article</type><title>AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage</title><source>Free E- Journals</source><creator>Seabra, G S ; Mücke, N T ; Silva, V L S ; Voskov, D ; Vossepoel, F</creator><creatorcontrib>Seabra, G S ; Mücke, N T ; Silva, V L S ; Voskov, D ; Vossepoel, F</creatorcontrib><description>This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO\(_2\) injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers better uncertainty quantification compared to conventional ESMDA for the case study.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Carbon sequestration ; Computation ; Data assimilation ; Geology ; Machine learning ; Uncertainty</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Seabra, G S</creatorcontrib><creatorcontrib>Mücke, N T</creatorcontrib><creatorcontrib>Silva, V L S</creatorcontrib><creatorcontrib>Voskov, D</creatorcontrib><creatorcontrib>Vossepoel, F</creatorcontrib><title>AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage</title><title>arXiv.org</title><description>This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO\(_2\) injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers better uncertainty quantification compared to conventional ESMDA for the case study.</description><subject>Accuracy</subject><subject>Carbon sequestration</subject><subject>Computation</subject><subject>Data assimilation</subject><subject>Geology</subject><subject>Machine learning</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy70OgjAUhuHGxESi3MNJnEngVARHQ_ybdTdHKFhSW2jL4N3bgQtw-obnexcsQs6zpNwhrljsXJ-mKe4LzHMeMTreQOg36Vo00JAnIOfkRyry0mgg3cAUzHqS2n9hnEh72cp65mFQMoTewEUYZboACiqyr4B3byx1YsOWLSkn4nnXbHs-PaprMlgzTsL5Z28mqwM98YA5ljwrOP_v9QNo2EWr</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Seabra, G S</creator><creator>Mücke, N T</creator><creator>Silva, V L S</creator><creator>Voskov, D</creator><creator>Vossepoel, F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240209</creationdate><title>AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage</title><author>Seabra, G S ; Mücke, N T ; Silva, V L S ; Voskov, D ; Vossepoel, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29252831733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Carbon sequestration</topic><topic>Computation</topic><topic>Data assimilation</topic><topic>Geology</topic><topic>Machine learning</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Seabra, G S</creatorcontrib><creatorcontrib>Mücke, N T</creatorcontrib><creatorcontrib>Silva, V L S</creatorcontrib><creatorcontrib>Voskov, D</creatorcontrib><creatorcontrib>Vossepoel, F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seabra, G S</au><au>Mücke, N T</au><au>Silva, V L S</au><au>Voskov, D</au><au>Vossepoel, F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage</atitle><jtitle>arXiv.org</jtitle><date>2024-02-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO\(_2\) injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers better uncertainty quantification compared to conventional ESMDA for the case study.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2925283173
source Free E- Journals
subjects Accuracy
Carbon sequestration
Computation
Data assimilation
Geology
Machine learning
Uncertainty
title AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AI%20enhanced%20data%20assimilation%20and%20uncertainty%20quantification%20applied%20to%20Geological%20Carbon%20Storage&rft.jtitle=arXiv.org&rft.au=Seabra,%20G%20S&rft.date=2024-02-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2925283173%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925283173&rft_id=info:pmid/&rfr_iscdi=true