Fibonacci wavelet method for time fractional convection–diffusion equations

This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-03, Vol.47 (4), p.2639-2655
Hauptverfasser: Yadav, Pooja, Jahan, Shah, Nisar, Kottakkaran Sooppy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2655
container_issue 4
container_start_page 2639
container_title Mathematical methods in the applied sciences
container_volume 47
creator Yadav, Pooja
Jahan, Shah
Nisar, Kottakkaran Sooppy
description This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.
doi_str_mv 10.1002/mma.9770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2924890523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924890523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgLXrxsnXy02RxLsSq0eNFzyGZnMWW3aZNdS2--g2_ok5i2Xj3NBz-G4U_ILYURBWAPbWtGSko4IwMKSuVUyMk5GQCVkAtGxSW5inEFAAWlbECWc1f6tbHWZTvziQ12WYvdh6-y2oescy1mdTC2cwk1mfXrTzwOP1_flavrPqY-w21vDst4TS5q00S8-atD8j5_fJs954vXp5fZdJFbpjjkE2YUUsnGiLJSvOKSUo4FCIolFyVDY0uwUMgSJiZBAMupTdhiUYIo-ZDcne5ugt_2GDu98n1IH0bNFBOFgjHjSd2flA0-xoC13gTXmrDXFPQhLJ3C0oewEs1PdOca3P_r9HI5PfpfGVhseA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924890523</pqid></control><display><type>article</type><title>Fibonacci wavelet method for time fractional convection–diffusion equations</title><source>Wiley Online Library All Journals</source><creator>Yadav, Pooja ; Jahan, Shah ; Nisar, Kottakkaran Sooppy</creator><creatorcontrib>Yadav, Pooja ; Jahan, Shah ; Nisar, Kottakkaran Sooppy</creatorcontrib><description>This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9770</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>block pulse function ; Convection-diffusion equation ; error analysis ; Fibonacci polynomial ; Fibonacci wavelet ; Fractional calculus ; operational matrix ; time‐fractional convection diffusion equations ; Wavelet analysis</subject><ispartof>Mathematical methods in the applied sciences, 2024-03, Vol.47 (4), p.2639-2655</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</citedby><cites>FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</cites><orcidid>0000-0002-5966-9185 ; 0000-0001-5769-4320 ; 0000-0002-4282-1670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9770$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9770$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yadav, Pooja</creatorcontrib><creatorcontrib>Jahan, Shah</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><title>Fibonacci wavelet method for time fractional convection–diffusion equations</title><title>Mathematical methods in the applied sciences</title><description>This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.</description><subject>block pulse function</subject><subject>Convection-diffusion equation</subject><subject>error analysis</subject><subject>Fibonacci polynomial</subject><subject>Fibonacci wavelet</subject><subject>Fractional calculus</subject><subject>operational matrix</subject><subject>time‐fractional convection diffusion equations</subject><subject>Wavelet analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgLXrxsnXy02RxLsSq0eNFzyGZnMWW3aZNdS2--g2_ok5i2Xj3NBz-G4U_ILYURBWAPbWtGSko4IwMKSuVUyMk5GQCVkAtGxSW5inEFAAWlbECWc1f6tbHWZTvziQ12WYvdh6-y2oescy1mdTC2cwk1mfXrTzwOP1_flavrPqY-w21vDst4TS5q00S8-atD8j5_fJs954vXp5fZdJFbpjjkE2YUUsnGiLJSvOKSUo4FCIolFyVDY0uwUMgSJiZBAMupTdhiUYIo-ZDcne5ugt_2GDu98n1IH0bNFBOFgjHjSd2flA0-xoC13gTXmrDXFPQhLJ3C0oewEs1PdOca3P_r9HI5PfpfGVhseA</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Yadav, Pooja</creator><creator>Jahan, Shah</creator><creator>Nisar, Kottakkaran Sooppy</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5966-9185</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4282-1670</orcidid></search><sort><creationdate>20240315</creationdate><title>Fibonacci wavelet method for time fractional convection–diffusion equations</title><author>Yadav, Pooja ; Jahan, Shah ; Nisar, Kottakkaran Sooppy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>block pulse function</topic><topic>Convection-diffusion equation</topic><topic>error analysis</topic><topic>Fibonacci polynomial</topic><topic>Fibonacci wavelet</topic><topic>Fractional calculus</topic><topic>operational matrix</topic><topic>time‐fractional convection diffusion equations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Pooja</creatorcontrib><creatorcontrib>Jahan, Shah</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Pooja</au><au>Jahan, Shah</au><au>Nisar, Kottakkaran Sooppy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci wavelet method for time fractional convection–diffusion equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-03-15</date><risdate>2024</risdate><volume>47</volume><issue>4</issue><spage>2639</spage><epage>2655</epage><pages>2639-2655</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9770</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5966-9185</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4282-1670</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-03, Vol.47 (4), p.2639-2655
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2924890523
source Wiley Online Library All Journals
subjects block pulse function
Convection-diffusion equation
error analysis
Fibonacci polynomial
Fibonacci wavelet
Fractional calculus
operational matrix
time‐fractional convection diffusion equations
Wavelet analysis
title Fibonacci wavelet method for time fractional convection–diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20wavelet%20method%20for%20time%20fractional%20convection%E2%80%93diffusion%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yadav,%20Pooja&rft.date=2024-03-15&rft.volume=47&rft.issue=4&rft.spage=2639&rft.epage=2655&rft.pages=2639-2655&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9770&rft_dat=%3Cproquest_cross%3E2924890523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924890523&rft_id=info:pmid/&rfr_iscdi=true