Fibonacci wavelet method for time fractional convection–diffusion equations
This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is p...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-03, Vol.47 (4), p.2639-2655 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2655 |
---|---|
container_issue | 4 |
container_start_page | 2639 |
container_title | Mathematical methods in the applied sciences |
container_volume | 47 |
creator | Yadav, Pooja Jahan, Shah Nisar, Kottakkaran Sooppy |
description | This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach. |
doi_str_mv | 10.1002/mma.9770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2924890523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924890523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgLXrxsnXy02RxLsSq0eNFzyGZnMWW3aZNdS2--g2_ok5i2Xj3NBz-G4U_ILYURBWAPbWtGSko4IwMKSuVUyMk5GQCVkAtGxSW5inEFAAWlbECWc1f6tbHWZTvziQ12WYvdh6-y2oescy1mdTC2cwk1mfXrTzwOP1_flavrPqY-w21vDst4TS5q00S8-atD8j5_fJs954vXp5fZdJFbpjjkE2YUUsnGiLJSvOKSUo4FCIolFyVDY0uwUMgSJiZBAMupTdhiUYIo-ZDcne5ugt_2GDu98n1IH0bNFBOFgjHjSd2flA0-xoC13gTXmrDXFPQhLJ3C0oewEs1PdOca3P_r9HI5PfpfGVhseA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924890523</pqid></control><display><type>article</type><title>Fibonacci wavelet method for time fractional convection–diffusion equations</title><source>Wiley Online Library All Journals</source><creator>Yadav, Pooja ; Jahan, Shah ; Nisar, Kottakkaran Sooppy</creator><creatorcontrib>Yadav, Pooja ; Jahan, Shah ; Nisar, Kottakkaran Sooppy</creatorcontrib><description>This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9770</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>block pulse function ; Convection-diffusion equation ; error analysis ; Fibonacci polynomial ; Fibonacci wavelet ; Fractional calculus ; operational matrix ; time‐fractional convection diffusion equations ; Wavelet analysis</subject><ispartof>Mathematical methods in the applied sciences, 2024-03, Vol.47 (4), p.2639-2655</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</citedby><cites>FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</cites><orcidid>0000-0002-5966-9185 ; 0000-0001-5769-4320 ; 0000-0002-4282-1670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9770$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9770$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yadav, Pooja</creatorcontrib><creatorcontrib>Jahan, Shah</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><title>Fibonacci wavelet method for time fractional convection–diffusion equations</title><title>Mathematical methods in the applied sciences</title><description>This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.</description><subject>block pulse function</subject><subject>Convection-diffusion equation</subject><subject>error analysis</subject><subject>Fibonacci polynomial</subject><subject>Fibonacci wavelet</subject><subject>Fractional calculus</subject><subject>operational matrix</subject><subject>time‐fractional convection diffusion equations</subject><subject>Wavelet analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgLXrxsnXy02RxLsSq0eNFzyGZnMWW3aZNdS2--g2_ok5i2Xj3NBz-G4U_ILYURBWAPbWtGSko4IwMKSuVUyMk5GQCVkAtGxSW5inEFAAWlbECWc1f6tbHWZTvziQ12WYvdh6-y2oescy1mdTC2cwk1mfXrTzwOP1_flavrPqY-w21vDst4TS5q00S8-atD8j5_fJs954vXp5fZdJFbpjjkE2YUUsnGiLJSvOKSUo4FCIolFyVDY0uwUMgSJiZBAMupTdhiUYIo-ZDcne5ugt_2GDu98n1IH0bNFBOFgjHjSd2flA0-xoC13gTXmrDXFPQhLJ3C0oewEs1PdOca3P_r9HI5PfpfGVhseA</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Yadav, Pooja</creator><creator>Jahan, Shah</creator><creator>Nisar, Kottakkaran Sooppy</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5966-9185</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4282-1670</orcidid></search><sort><creationdate>20240315</creationdate><title>Fibonacci wavelet method for time fractional convection–diffusion equations</title><author>Yadav, Pooja ; Jahan, Shah ; Nisar, Kottakkaran Sooppy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-62a9e1725ee7d93d37113e8041eb34b2eacb0c087b06ae1700c31cee7ce8b04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>block pulse function</topic><topic>Convection-diffusion equation</topic><topic>error analysis</topic><topic>Fibonacci polynomial</topic><topic>Fibonacci wavelet</topic><topic>Fractional calculus</topic><topic>operational matrix</topic><topic>time‐fractional convection diffusion equations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Pooja</creatorcontrib><creatorcontrib>Jahan, Shah</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Pooja</au><au>Jahan, Shah</au><au>Nisar, Kottakkaran Sooppy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci wavelet method for time fractional convection–diffusion equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-03-15</date><risdate>2024</risdate><volume>47</volume><issue>4</issue><spage>2639</spage><epage>2655</epage><pages>2639-2655</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This study concentrates on time fractional convection–diffusion equations (TFCDEs) with variable coefficients and their numerical solutions. Caputo derivative is used to calculate the time fractional order derivatives. In order to give an approximate solution to the TFCDE, an effective approach is proposed utilizing Fibonacci wavelet and block pulse functions. The Fibonacci wavelets operational matrices of fractional order integration are constructed. By combining the collocation technique, they are used to simplify the fractional model to a collection of algebraic equations. The suggested approach is quite practical for resolving issues of this nature. The comparison and analysis with other approaches demonstrate the effectiveness and precision of the suggested approach.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9770</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5966-9185</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4282-1670</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-03, Vol.47 (4), p.2639-2655 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2924890523 |
source | Wiley Online Library All Journals |
subjects | block pulse function Convection-diffusion equation error analysis Fibonacci polynomial Fibonacci wavelet Fractional calculus operational matrix time‐fractional convection diffusion equations Wavelet analysis |
title | Fibonacci wavelet method for time fractional convection–diffusion equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20wavelet%20method%20for%20time%20fractional%20convection%E2%80%93diffusion%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yadav,%20Pooja&rft.date=2024-03-15&rft.volume=47&rft.issue=4&rft.spage=2639&rft.epage=2655&rft.pages=2639-2655&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9770&rft_dat=%3Cproquest_cross%3E2924890523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924890523&rft_id=info:pmid/&rfr_iscdi=true |