Anisotropic degenerate elliptic problem with singular gradient lower order term
In this paper, we investigate the existence and regularity results of anisotropic elliptic equations with degenerate coercivity and a singular lower order term exhibiting natural growth with respect to the gradient. The model problem we consider is 0.1 - ∑ i = 1 N D i [ | D i u | p i - 2 D i u ( 1 +...
Gespeichert in:
Veröffentlicht in: | Bollettino della Unione matematica italiana (2008) 2024-03, Vol.17 (1), p.149-174 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 1 |
container_start_page | 149 |
container_title | Bollettino della Unione matematica italiana (2008) |
container_volume | 17 |
creator | Khelifi, Hichem |
description | In this paper, we investigate the existence and regularity results of anisotropic elliptic equations with degenerate coercivity and a singular lower order term exhibiting natural growth with respect to the gradient. The model problem we consider is
0.1
-
∑
i
=
1
N
D
i
[
|
D
i
u
|
p
i
-
2
D
i
u
(
1
+
|
u
|
)
γ
]
+
∑
i
=
1
N
|
D
i
u
|
p
i
|
u
|
θ
=
f
in
Ω
,
u
=
0
on
∂
Ω
,
where
Ω
is a bounded domain in
R
N
,
γ
>
0
,
0
≤
θ
<
1
and
2
≤
p
1
≤
p
2
≤
⋯
≤
p
N
. The results of our study will rely on the summability of
f
in specific Lebesgue spaces and the value of
γ
. |
doi_str_mv | 10.1007/s40574-023-00395-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2924716627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924716627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5de6efa613030cf86f7871169db4498f35e74533168537f6026713d1b10dcfc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwVPEdnkjZpjsviPxD2oufQbSe1S7etSZbFb2-0gjcvMzC89-bxY-wa4RYB9F3IodA5ByE5gDQFl2dsIdCUXOjCnLMFGi240iK_ZKsQ9gCAKEtt9IJt10MXxujHqauzhloayFeRMur7borpNvlx19MhO3XxPQvd0B77ymetr5qOhpj144l8NvomzUj-cMUuXNUHWv3uJXt7uH_dPPGX7ePzZv3Ca4km8rpoSJGrFEqQULtSOV1qRGWaXZ6b0smCdF5IiaospHYKhNIoG9whNLWr5ZLdzLmp38eRQrT78eiH9NIKI3KNSgmdVGJW1X4MwZOzk-8Olf-0CPabnZ3Z2cTO_rCzMpnkbApJPLTk_6L_cX0BHtNxZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924716627</pqid></control><display><type>article</type><title>Anisotropic degenerate elliptic problem with singular gradient lower order term</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khelifi, Hichem</creator><creatorcontrib>Khelifi, Hichem</creatorcontrib><description>In this paper, we investigate the existence and regularity results of anisotropic elliptic equations with degenerate coercivity and a singular lower order term exhibiting natural growth with respect to the gradient. The model problem we consider is
0.1
-
∑
i
=
1
N
D
i
[
|
D
i
u
|
p
i
-
2
D
i
u
(
1
+
|
u
|
)
γ
]
+
∑
i
=
1
N
|
D
i
u
|
p
i
|
u
|
θ
=
f
in
Ω
,
u
=
0
on
∂
Ω
,
where
Ω
is a bounded domain in
R
N
,
γ
>
0
,
0
≤
θ
<
1
and
2
≤
p
1
≤
p
2
≤
⋯
≤
p
N
. The results of our study will rely on the summability of
f
in specific Lebesgue spaces and the value of
γ
.</description><identifier>ISSN: 1972-6724</identifier><identifier>EISSN: 2198-2759</identifier><identifier>DOI: 10.1007/s40574-023-00395-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Coercivity ; Elliptic functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bollettino della Unione matematica italiana (2008), 2024-03, Vol.17 (1), p.149-174</ispartof><rights>The Author(s), under exclusive licence to Unione Matematica Italiana 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5de6efa613030cf86f7871169db4498f35e74533168537f6026713d1b10dcfc3</citedby><cites>FETCH-LOGICAL-c319t-c5de6efa613030cf86f7871169db4498f35e74533168537f6026713d1b10dcfc3</cites><orcidid>0000-0001-5070-9999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40574-023-00395-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40574-023-00395-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Khelifi, Hichem</creatorcontrib><title>Anisotropic degenerate elliptic problem with singular gradient lower order term</title><title>Bollettino della Unione matematica italiana (2008)</title><addtitle>Boll Unione Mat Ital</addtitle><description>In this paper, we investigate the existence and regularity results of anisotropic elliptic equations with degenerate coercivity and a singular lower order term exhibiting natural growth with respect to the gradient. The model problem we consider is
0.1
-
∑
i
=
1
N
D
i
[
|
D
i
u
|
p
i
-
2
D
i
u
(
1
+
|
u
|
)
γ
]
+
∑
i
=
1
N
|
D
i
u
|
p
i
|
u
|
θ
=
f
in
Ω
,
u
=
0
on
∂
Ω
,
where
Ω
is a bounded domain in
R
N
,
γ
>
0
,
0
≤
θ
<
1
and
2
≤
p
1
≤
p
2
≤
⋯
≤
p
N
. The results of our study will rely on the summability of
f
in specific Lebesgue spaces and the value of
γ
.</description><subject>Coercivity</subject><subject>Elliptic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1972-6724</issn><issn>2198-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouKz7BTwVPEdnkjZpjsviPxD2oufQbSe1S7etSZbFb2-0gjcvMzC89-bxY-wa4RYB9F3IodA5ByE5gDQFl2dsIdCUXOjCnLMFGi240iK_ZKsQ9gCAKEtt9IJt10MXxujHqauzhloayFeRMur7borpNvlx19MhO3XxPQvd0B77ymetr5qOhpj144l8NvomzUj-cMUuXNUHWv3uJXt7uH_dPPGX7ePzZv3Ca4km8rpoSJGrFEqQULtSOV1qRGWaXZ6b0smCdF5IiaospHYKhNIoG9whNLWr5ZLdzLmp38eRQrT78eiH9NIKI3KNSgmdVGJW1X4MwZOzk-8Olf-0CPabnZ3Z2cTO_rCzMpnkbApJPLTk_6L_cX0BHtNxZg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Khelifi, Hichem</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5070-9999</orcidid></search><sort><creationdate>20240301</creationdate><title>Anisotropic degenerate elliptic problem with singular gradient lower order term</title><author>Khelifi, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5de6efa613030cf86f7871169db4498f35e74533168537f6026713d1b10dcfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coercivity</topic><topic>Elliptic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Khelifi, Hichem</creatorcontrib><collection>CrossRef</collection><jtitle>Bollettino della Unione matematica italiana (2008)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khelifi, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic degenerate elliptic problem with singular gradient lower order term</atitle><jtitle>Bollettino della Unione matematica italiana (2008)</jtitle><stitle>Boll Unione Mat Ital</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>149</spage><epage>174</epage><pages>149-174</pages><issn>1972-6724</issn><eissn>2198-2759</eissn><abstract>In this paper, we investigate the existence and regularity results of anisotropic elliptic equations with degenerate coercivity and a singular lower order term exhibiting natural growth with respect to the gradient. The model problem we consider is
0.1
-
∑
i
=
1
N
D
i
[
|
D
i
u
|
p
i
-
2
D
i
u
(
1
+
|
u
|
)
γ
]
+
∑
i
=
1
N
|
D
i
u
|
p
i
|
u
|
θ
=
f
in
Ω
,
u
=
0
on
∂
Ω
,
where
Ω
is a bounded domain in
R
N
,
γ
>
0
,
0
≤
θ
<
1
and
2
≤
p
1
≤
p
2
≤
⋯
≤
p
N
. The results of our study will rely on the summability of
f
in specific Lebesgue spaces and the value of
γ
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40574-023-00395-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5070-9999</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1972-6724 |
ispartof | Bollettino della Unione matematica italiana (2008), 2024-03, Vol.17 (1), p.149-174 |
issn | 1972-6724 2198-2759 |
language | eng |
recordid | cdi_proquest_journals_2924716627 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coercivity Elliptic functions Mathematics Mathematics and Statistics |
title | Anisotropic degenerate elliptic problem with singular gradient lower order term |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20degenerate%20elliptic%20problem%20with%20singular%20gradient%20lower%20order%20term&rft.jtitle=Bollettino%20della%20Unione%20matematica%20italiana%20(2008)&rft.au=Khelifi,%20Hichem&rft.date=2024-03-01&rft.volume=17&rft.issue=1&rft.spage=149&rft.epage=174&rft.pages=149-174&rft.issn=1972-6724&rft.eissn=2198-2759&rft_id=info:doi/10.1007/s40574-023-00395-3&rft_dat=%3Cproquest_cross%3E2924716627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924716627&rft_id=info:pmid/&rfr_iscdi=true |