Graphs with Gp-connected medians

The median of a graph G with weighted vertices is the set of all vertices x minimizing the sum of weighted distances from x to the vertices of G . For any integer p ≥ 2 , we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024, Vol.203 (1-2), p.369-420
Hauptverfasser: Bénéteau, Laurine, Chalopin, Jérémie, Chepoi, Victor, Vaxès, Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 1-2
container_start_page 369
container_title Mathematical programming
container_volume 203
creator Bénéteau, Laurine
Chalopin, Jérémie
Chepoi, Victor
Vaxès, Yann
description The median of a graph G with weighted vertices is the set of all vertices x minimizing the sum of weighted distances from x to the vertices of G . For any integer p ≥ 2 , we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in the p th power G p of G . This extends some characterizations of graphs with connected medians (case p = 1 ) provided by Bandelt and Chepoi (SIAM J Discrete Math 15(2):268–282, 2002. https://doi.org/10.1137/S089548019936360X ). The characteristic conditions can be tested in polynomial time for any p . We also show that several important classes of graphs in metric graph theory, including bridged graphs (and thus chordal graphs), graphs with convex balls, bucolic graphs, and bipartite absolute retracts, have G 2 -connected medians. Extending the result of Bandelt and Chepoi that basis graphs of matroids are graphs with connected medians, we characterize the isometric subgraphs of Johnson graphs and of halved-cubes with connected medians.
doi_str_mv 10.1007/s10107-023-01939-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2924290833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924290833</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-91e574b2f84fbb62c5583b15da8b948ee4c439463838318bf7bc6fdbfbbc4dd3</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMoWEf_gKuC6-h7eUmaLGXQjjDgZvah-ajTQdvadPDvWx1B7uJuDvfCYewW4R4BqoeMgFBxEMQBLVlOZ6xASZpLLfU5KwCE4kojXLKrnA8AgGRMwcp6asZ9Lr-6eV_WIw9D36cwp1h-pNg1fb5mF23zntPNX6_Y7vlpt97w7Wv9sn7c8hFVNXOLSVXSi9bI1nstglKGPKrYGG-lSUkGSVZqMkvQ-LbyQbfRL3CQMdKK3Z1mx2n4PKY8u8NwnPrl0QkrpLBgiBaKTlQep65_S9M_heB-TLiTCbeYcL8mHNE34wZPrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924290833</pqid></control><display><type>article</type><title>Graphs with Gp-connected medians</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Bénéteau, Laurine ; Chalopin, Jérémie ; Chepoi, Victor ; Vaxès, Yann</creator><creatorcontrib>Bénéteau, Laurine ; Chalopin, Jérémie ; Chepoi, Victor ; Vaxès, Yann</creatorcontrib><description>The median of a graph G with weighted vertices is the set of all vertices x minimizing the sum of weighted distances from x to the vertices of G . For any integer p ≥ 2 , we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in the p th power G p of G . This extends some characterizations of graphs with connected medians (case p = 1 ) provided by Bandelt and Chepoi (SIAM J Discrete Math 15(2):268–282, 2002. https://doi.org/10.1137/S089548019936360X ). The characteristic conditions can be tested in polynomial time for any p . We also show that several important classes of graphs in metric graph theory, including bridged graphs (and thus chordal graphs), graphs with convex balls, bucolic graphs, and bipartite absolute retracts, have G 2 -connected medians. Extending the result of Bandelt and Chepoi that basis graphs of matroids are graphs with connected medians, we characterize the isometric subgraphs of Johnson graphs and of halved-cubes with connected medians.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-023-01939-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Cubes ; Full Length Paper ; Graph theory ; Graphs ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Polynomials ; Theoretical</subject><ispartof>Mathematical programming, 2024, Vol.203 (1-2), p.369-420</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0481-7312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-023-01939-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-023-01939-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bénéteau, Laurine</creatorcontrib><creatorcontrib>Chalopin, Jérémie</creatorcontrib><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Vaxès, Yann</creatorcontrib><title>Graphs with Gp-connected medians</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>The median of a graph G with weighted vertices is the set of all vertices x minimizing the sum of weighted distances from x to the vertices of G . For any integer p ≥ 2 , we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in the p th power G p of G . This extends some characterizations of graphs with connected medians (case p = 1 ) provided by Bandelt and Chepoi (SIAM J Discrete Math 15(2):268–282, 2002. https://doi.org/10.1137/S089548019936360X ). The characteristic conditions can be tested in polynomial time for any p . We also show that several important classes of graphs in metric graph theory, including bridged graphs (and thus chordal graphs), graphs with convex balls, bucolic graphs, and bipartite absolute retracts, have G 2 -connected medians. Extending the result of Bandelt and Chepoi that basis graphs of matroids are graphs with connected medians, we characterize the isometric subgraphs of Johnson graphs and of halved-cubes with connected medians.</description><subject>Apexes</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Cubes</subject><subject>Full Length Paper</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAURYMoWEf_gKuC6-h7eUmaLGXQjjDgZvah-ajTQdvadPDvWx1B7uJuDvfCYewW4R4BqoeMgFBxEMQBLVlOZ6xASZpLLfU5KwCE4kojXLKrnA8AgGRMwcp6asZ9Lr-6eV_WIw9D36cwp1h-pNg1fb5mF23zntPNX6_Y7vlpt97w7Wv9sn7c8hFVNXOLSVXSi9bI1nstglKGPKrYGG-lSUkGSVZqMkvQ-LbyQbfRL3CQMdKK3Z1mx2n4PKY8u8NwnPrl0QkrpLBgiBaKTlQep65_S9M_heB-TLiTCbeYcL8mHNE34wZPrQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bénéteau, Laurine</creator><creator>Chalopin, Jérémie</creator><creator>Chepoi, Victor</creator><creator>Vaxès, Yann</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0481-7312</orcidid></search><sort><creationdate>2024</creationdate><title>Graphs with Gp-connected medians</title><author>Bénéteau, Laurine ; Chalopin, Jérémie ; Chepoi, Victor ; Vaxès, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-91e574b2f84fbb62c5583b15da8b948ee4c439463838318bf7bc6fdbfbbc4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Cubes</topic><topic>Full Length Paper</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bénéteau, Laurine</creatorcontrib><creatorcontrib>Chalopin, Jérémie</creatorcontrib><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Vaxès, Yann</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénéteau, Laurine</au><au>Chalopin, Jérémie</au><au>Chepoi, Victor</au><au>Vaxès, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphs with Gp-connected medians</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2024</date><risdate>2024</risdate><volume>203</volume><issue>1-2</issue><spage>369</spage><epage>420</epage><pages>369-420</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>The median of a graph G with weighted vertices is the set of all vertices x minimizing the sum of weighted distances from x to the vertices of G . For any integer p ≥ 2 , we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in the p th power G p of G . This extends some characterizations of graphs with connected medians (case p = 1 ) provided by Bandelt and Chepoi (SIAM J Discrete Math 15(2):268–282, 2002. https://doi.org/10.1137/S089548019936360X ). The characteristic conditions can be tested in polynomial time for any p . We also show that several important classes of graphs in metric graph theory, including bridged graphs (and thus chordal graphs), graphs with convex balls, bucolic graphs, and bipartite absolute retracts, have G 2 -connected medians. Extending the result of Bandelt and Chepoi that basis graphs of matroids are graphs with connected medians, we characterize the isometric subgraphs of Johnson graphs and of halved-cubes with connected medians.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-023-01939-3</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-0481-7312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2024, Vol.203 (1-2), p.369-420
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2924290833
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Apexes
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Cubes
Full Length Paper
Graph theory
Graphs
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Polynomials
Theoretical
title Graphs with Gp-connected medians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20with%20Gp-connected%20medians&rft.jtitle=Mathematical%20programming&rft.au=B%C3%A9n%C3%A9teau,%20Laurine&rft.date=2024&rft.volume=203&rft.issue=1-2&rft.spage=369&rft.epage=420&rft.pages=369-420&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-023-01939-3&rft_dat=%3Cproquest_sprin%3E2924290833%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924290833&rft_id=info:pmid/&rfr_iscdi=true