Question Aware Vision Transformer for Multimodal Reasoning
Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation spac...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ganz, Roy Kittenplon, Yair Aberdam, Aviad Elad Ben Avraham Nuriel, Oren Mazor, Shai Litman, Ron |
description | Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2924067272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924067272</sourcerecordid><originalsourceid>FETCH-proquest_journals_29240672723</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCixNLS7JzM9TcCxPLEpVCMssBnFCihLzitPyi3JTixSAlIJvaU5JZm5-SmKOQlBqYnF-XmZeOg8Da1piTnEqL5TmZlB2cw1x9tAtKMovBJkan5VfWpQHlIo3sjQyMQBaaW5kTJwqAOdONyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924067272</pqid></control><display><type>article</type><title>Question Aware Vision Transformer for Multimodal Reasoning</title><source>Free E- Journals</source><creator>Ganz, Roy ; Kittenplon, Yair ; Aberdam, Aviad ; Elad Ben Avraham ; Nuriel, Oren ; Mazor, Shai ; Litman, Ron</creator><creatorcontrib>Ganz, Roy ; Kittenplon, Yair ; Aberdam, Aviad ; Elad Ben Avraham ; Nuriel, Oren ; Mazor, Shai ; Litman, Ron</creatorcontrib><description>Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Large language models ; Query processing ; Questions ; Reasoning ; Vision</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ganz, Roy</creatorcontrib><creatorcontrib>Kittenplon, Yair</creatorcontrib><creatorcontrib>Aberdam, Aviad</creatorcontrib><creatorcontrib>Elad Ben Avraham</creatorcontrib><creatorcontrib>Nuriel, Oren</creatorcontrib><creatorcontrib>Mazor, Shai</creatorcontrib><creatorcontrib>Litman, Ron</creatorcontrib><title>Question Aware Vision Transformer for Multimodal Reasoning</title><title>arXiv.org</title><description>Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.</description><subject>Coders</subject><subject>Large language models</subject><subject>Query processing</subject><subject>Questions</subject><subject>Reasoning</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCixNLS7JzM9TcCxPLEpVCMssBnFCihLzitPyi3JTixSAlIJvaU5JZm5-SmKOQlBqYnF-XmZeOg8Da1piTnEqL5TmZlB2cw1x9tAtKMovBJkan5VfWpQHlIo3sjQyMQBaaW5kTJwqAOdONyk</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Ganz, Roy</creator><creator>Kittenplon, Yair</creator><creator>Aberdam, Aviad</creator><creator>Elad Ben Avraham</creator><creator>Nuriel, Oren</creator><creator>Mazor, Shai</creator><creator>Litman, Ron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240208</creationdate><title>Question Aware Vision Transformer for Multimodal Reasoning</title><author>Ganz, Roy ; Kittenplon, Yair ; Aberdam, Aviad ; Elad Ben Avraham ; Nuriel, Oren ; Mazor, Shai ; Litman, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29240672723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Large language models</topic><topic>Query processing</topic><topic>Questions</topic><topic>Reasoning</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganz, Roy</creatorcontrib><creatorcontrib>Kittenplon, Yair</creatorcontrib><creatorcontrib>Aberdam, Aviad</creatorcontrib><creatorcontrib>Elad Ben Avraham</creatorcontrib><creatorcontrib>Nuriel, Oren</creatorcontrib><creatorcontrib>Mazor, Shai</creatorcontrib><creatorcontrib>Litman, Ron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganz, Roy</au><au>Kittenplon, Yair</au><au>Aberdam, Aviad</au><au>Elad Ben Avraham</au><au>Nuriel, Oren</au><au>Mazor, Shai</au><au>Litman, Ron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Question Aware Vision Transformer for Multimodal Reasoning</atitle><jtitle>arXiv.org</jtitle><date>2024-02-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2924067272 |
source | Free E- Journals |
subjects | Coders Large language models Query processing Questions Reasoning Vision |
title | Question Aware Vision Transformer for Multimodal Reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Question%20Aware%20Vision%20Transformer%20for%20Multimodal%20Reasoning&rft.jtitle=arXiv.org&rft.au=Ganz,%20Roy&rft.date=2024-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2924067272%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924067272&rft_id=info:pmid/&rfr_iscdi=true |