RESMatch: Referring Expression Segmentation in a Semi-Supervised Manner

Referring expression segmentation (RES), a task that involves localizing specific instance-level objects based on free-form linguistic descriptions, has emerged as a crucial frontier in human-AI interaction. It demands an intricate understanding of both visual and textual contexts and often requires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Zang, Ying, Fu, Chenglong, Cao, Runlong, Zhu, Didi, Zhang, Min, Hu, Wenjun, Zhu, Lanyun, Chen, Tianrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zang, Ying
Fu, Chenglong
Cao, Runlong
Zhu, Didi
Zhang, Min
Hu, Wenjun
Zhu, Lanyun
Chen, Tianrun
description Referring expression segmentation (RES), a task that involves localizing specific instance-level objects based on free-form linguistic descriptions, has emerged as a crucial frontier in human-AI interaction. It demands an intricate understanding of both visual and textual contexts and often requires extensive training data. This paper introduces RESMatch, the first semi-supervised learning (SSL) approach for RES, aimed at reducing reliance on exhaustive data annotation. Extensive validation on multiple RES datasets demonstrates that RESMatch significantly outperforms baseline approaches, establishing a new state-of-the-art. Although existing SSL techniques are effective in image segmentation, we find that they fall short in RES. Facing the challenges including the comprehension of free-form linguistic descriptions and the variability in object attributes, RESMatch introduces a trifecta of adaptations: revised strong perturbation, text augmentation, and adjustments for pseudo-label quality and strong-weak supervision. This pioneering work lays the groundwork for future research in semi-supervised learning for referring expression segmentation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2924067253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924067253</sourcerecordid><originalsourceid>FETCH-proquest_journals_29240672533</originalsourceid><addsrcrecordid>eNqNjc0KgkAUhYcgSMp3GGgtTDPa3zasNm6yvQx1tZG82r1j9Pgp9ACtDuc7H5yJCLQxq2gbaz0TIXOtlNLrjU4SE4jTJc0z62-PvbxACUQOK5l-OgJm16LMoWoAvfVjcSjtQBoX5X0H9HYMd5lZRKCFmJb2yRD-ci6Wx_R6OEcdta8e2Bd12xMOU6F3OlbjvzH_WV_LpztN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924067253</pqid></control><display><type>article</type><title>RESMatch: Referring Expression Segmentation in a Semi-Supervised Manner</title><source>Free E- Journals</source><creator>Zang, Ying ; Fu, Chenglong ; Cao, Runlong ; Zhu, Didi ; Zhang, Min ; Hu, Wenjun ; Zhu, Lanyun ; Chen, Tianrun</creator><creatorcontrib>Zang, Ying ; Fu, Chenglong ; Cao, Runlong ; Zhu, Didi ; Zhang, Min ; Hu, Wenjun ; Zhu, Lanyun ; Chen, Tianrun</creatorcontrib><description>Referring expression segmentation (RES), a task that involves localizing specific instance-level objects based on free-form linguistic descriptions, has emerged as a crucial frontier in human-AI interaction. It demands an intricate understanding of both visual and textual contexts and often requires extensive training data. This paper introduces RESMatch, the first semi-supervised learning (SSL) approach for RES, aimed at reducing reliance on exhaustive data annotation. Extensive validation on multiple RES datasets demonstrates that RESMatch significantly outperforms baseline approaches, establishing a new state-of-the-art. Although existing SSL techniques are effective in image segmentation, we find that they fall short in RES. Facing the challenges including the comprehension of free-form linguistic descriptions and the variability in object attributes, RESMatch introduces a trifecta of adaptations: revised strong perturbation, text augmentation, and adjustments for pseudo-label quality and strong-weak supervision. This pioneering work lays the groundwork for future research in semi-supervised learning for referring expression segmentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Descriptions ; Free form ; Image segmentation ; Linguistics ; Machine learning ; Semi-supervised learning</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Zang, Ying</creatorcontrib><creatorcontrib>Fu, Chenglong</creatorcontrib><creatorcontrib>Cao, Runlong</creatorcontrib><creatorcontrib>Zhu, Didi</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Hu, Wenjun</creatorcontrib><creatorcontrib>Zhu, Lanyun</creatorcontrib><creatorcontrib>Chen, Tianrun</creatorcontrib><title>RESMatch: Referring Expression Segmentation in a Semi-Supervised Manner</title><title>arXiv.org</title><description>Referring expression segmentation (RES), a task that involves localizing specific instance-level objects based on free-form linguistic descriptions, has emerged as a crucial frontier in human-AI interaction. It demands an intricate understanding of both visual and textual contexts and often requires extensive training data. This paper introduces RESMatch, the first semi-supervised learning (SSL) approach for RES, aimed at reducing reliance on exhaustive data annotation. Extensive validation on multiple RES datasets demonstrates that RESMatch significantly outperforms baseline approaches, establishing a new state-of-the-art. Although existing SSL techniques are effective in image segmentation, we find that they fall short in RES. Facing the challenges including the comprehension of free-form linguistic descriptions and the variability in object attributes, RESMatch introduces a trifecta of adaptations: revised strong perturbation, text augmentation, and adjustments for pseudo-label quality and strong-weak supervision. This pioneering work lays the groundwork for future research in semi-supervised learning for referring expression segmentation.</description><subject>Descriptions</subject><subject>Free form</subject><subject>Image segmentation</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Semi-supervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc0KgkAUhYcgSMp3GGgtTDPa3zasNm6yvQx1tZG82r1j9Pgp9ACtDuc7H5yJCLQxq2gbaz0TIXOtlNLrjU4SE4jTJc0z62-PvbxACUQOK5l-OgJm16LMoWoAvfVjcSjtQBoX5X0H9HYMd5lZRKCFmJb2yRD-ci6Wx_R6OEcdta8e2Bd12xMOU6F3OlbjvzH_WV_LpztN</recordid><startdate>20240211</startdate><enddate>20240211</enddate><creator>Zang, Ying</creator><creator>Fu, Chenglong</creator><creator>Cao, Runlong</creator><creator>Zhu, Didi</creator><creator>Zhang, Min</creator><creator>Hu, Wenjun</creator><creator>Zhu, Lanyun</creator><creator>Chen, Tianrun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240211</creationdate><title>RESMatch: Referring Expression Segmentation in a Semi-Supervised Manner</title><author>Zang, Ying ; Fu, Chenglong ; Cao, Runlong ; Zhu, Didi ; Zhang, Min ; Hu, Wenjun ; Zhu, Lanyun ; Chen, Tianrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29240672533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Descriptions</topic><topic>Free form</topic><topic>Image segmentation</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Semi-supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zang, Ying</creatorcontrib><creatorcontrib>Fu, Chenglong</creatorcontrib><creatorcontrib>Cao, Runlong</creatorcontrib><creatorcontrib>Zhu, Didi</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Hu, Wenjun</creatorcontrib><creatorcontrib>Zhu, Lanyun</creatorcontrib><creatorcontrib>Chen, Tianrun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Ying</au><au>Fu, Chenglong</au><au>Cao, Runlong</au><au>Zhu, Didi</au><au>Zhang, Min</au><au>Hu, Wenjun</au><au>Zhu, Lanyun</au><au>Chen, Tianrun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RESMatch: Referring Expression Segmentation in a Semi-Supervised Manner</atitle><jtitle>arXiv.org</jtitle><date>2024-02-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Referring expression segmentation (RES), a task that involves localizing specific instance-level objects based on free-form linguistic descriptions, has emerged as a crucial frontier in human-AI interaction. It demands an intricate understanding of both visual and textual contexts and often requires extensive training data. This paper introduces RESMatch, the first semi-supervised learning (SSL) approach for RES, aimed at reducing reliance on exhaustive data annotation. Extensive validation on multiple RES datasets demonstrates that RESMatch significantly outperforms baseline approaches, establishing a new state-of-the-art. Although existing SSL techniques are effective in image segmentation, we find that they fall short in RES. Facing the challenges including the comprehension of free-form linguistic descriptions and the variability in object attributes, RESMatch introduces a trifecta of adaptations: revised strong perturbation, text augmentation, and adjustments for pseudo-label quality and strong-weak supervision. This pioneering work lays the groundwork for future research in semi-supervised learning for referring expression segmentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2924067253
source Free E- Journals
subjects Descriptions
Free form
Image segmentation
Linguistics
Machine learning
Semi-supervised learning
title RESMatch: Referring Expression Segmentation in a Semi-Supervised Manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RESMatch:%20Referring%20Expression%20Segmentation%20in%20a%20Semi-Supervised%20Manner&rft.jtitle=arXiv.org&rft.au=Zang,%20Ying&rft.date=2024-02-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2924067253%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924067253&rft_id=info:pmid/&rfr_iscdi=true