Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty

The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Hansen, Peter Nicholas, Papageorgiou, Dimitrios, Galeazzi, Roberto, Blanke, Mogens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hansen, Peter Nicholas
Papageorgiou, Dimitrios
Galeazzi, Roberto
Blanke, Mogens
description The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2924067086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924067086</sourcerecordid><originalsourceid>FETCH-proquest_journals_29240670863</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxJf-XJeoC1Gwui6PmmpKSTSfgrdX0AO4GpiZCYmA81VSpgAzEjvXM8YgLyDLeESq2pv2js6rllbH_UlsHRUjDgG9Mpp2xtIaO0kPOKrb1wV9lZZedCutR6X9a0GmHQ5Oxj_OyXIjztUueVjzDNL5pjfB6k9qYA0pywtW5vy_6w3FJDnm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924067086</pqid></control><display><type>article</type><title>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</title><source>Free E- Journals</source><creator>Hansen, Peter Nicholas ; Papageorgiou, Dimitrios ; Galeazzi, Roberto ; Blanke, Mogens</creator><creatorcontrib>Hansen, Peter Nicholas ; Papageorgiou, Dimitrios ; Galeazzi, Roberto ; Blanke, Mogens</creatorcontrib><description>The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Evaluation ; Navigation ; Sea vessels ; Uncertainty</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Hansen, Peter Nicholas</creatorcontrib><creatorcontrib>Papageorgiou, Dimitrios</creatorcontrib><creatorcontrib>Galeazzi, Roberto</creatorcontrib><creatorcontrib>Blanke, Mogens</creatorcontrib><title>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</title><title>arXiv.org</title><description>The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.</description><subject>Algorithms</subject><subject>Evaluation</subject><subject>Navigation</subject><subject>Sea vessels</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxJf-XJeoC1Gwui6PmmpKSTSfgrdX0AO4GpiZCYmA81VSpgAzEjvXM8YgLyDLeESq2pv2js6rllbH_UlsHRUjDgG9Mpp2xtIaO0kPOKrb1wV9lZZedCutR6X9a0GmHQ5Oxj_OyXIjztUueVjzDNL5pjfB6k9qYA0pywtW5vy_6w3FJDnm</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Hansen, Peter Nicholas</creator><creator>Papageorgiou, Dimitrios</creator><creator>Galeazzi, Roberto</creator><creator>Blanke, Mogens</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240208</creationdate><title>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</title><author>Hansen, Peter Nicholas ; Papageorgiou, Dimitrios ; Galeazzi, Roberto ; Blanke, Mogens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29240670863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Evaluation</topic><topic>Navigation</topic><topic>Sea vessels</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Peter Nicholas</creatorcontrib><creatorcontrib>Papageorgiou, Dimitrios</creatorcontrib><creatorcontrib>Galeazzi, Roberto</creatorcontrib><creatorcontrib>Blanke, Mogens</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Peter Nicholas</au><au>Papageorgiou, Dimitrios</au><au>Galeazzi, Roberto</au><au>Blanke, Mogens</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</atitle><jtitle>arXiv.org</jtitle><date>2024-02-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2924067086
source Free E- Journals
subjects Algorithms
Evaluation
Navigation
Sea vessels
Uncertainty
title Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20COLREGs%20Evaluation%20for%20Safe%20Navigation%20under%20Uncertainty&rft.jtitle=arXiv.org&rft.au=Hansen,%20Peter%20Nicholas&rft.date=2024-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2924067086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924067086&rft_id=info:pmid/&rfr_iscdi=true