Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty
The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. Th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hansen, Peter Nicholas Papageorgiou, Dimitrios Galeazzi, Roberto Blanke, Mogens |
description | The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2924067086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924067086</sourcerecordid><originalsourceid>FETCH-proquest_journals_29240670863</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxJf-XJeoC1Gwui6PmmpKSTSfgrdX0AO4GpiZCYmA81VSpgAzEjvXM8YgLyDLeESq2pv2js6rllbH_UlsHRUjDgG9Mpp2xtIaO0kPOKrb1wV9lZZedCutR6X9a0GmHQ5Oxj_OyXIjztUueVjzDNL5pjfB6k9qYA0pywtW5vy_6w3FJDnm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924067086</pqid></control><display><type>article</type><title>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</title><source>Free E- Journals</source><creator>Hansen, Peter Nicholas ; Papageorgiou, Dimitrios ; Galeazzi, Roberto ; Blanke, Mogens</creator><creatorcontrib>Hansen, Peter Nicholas ; Papageorgiou, Dimitrios ; Galeazzi, Roberto ; Blanke, Mogens</creatorcontrib><description>The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Evaluation ; Navigation ; Sea vessels ; Uncertainty</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Hansen, Peter Nicholas</creatorcontrib><creatorcontrib>Papageorgiou, Dimitrios</creatorcontrib><creatorcontrib>Galeazzi, Roberto</creatorcontrib><creatorcontrib>Blanke, Mogens</creatorcontrib><title>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</title><title>arXiv.org</title><description>The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.</description><subject>Algorithms</subject><subject>Evaluation</subject><subject>Navigation</subject><subject>Sea vessels</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxJf-XJeoC1Gwui6PmmpKSTSfgrdX0AO4GpiZCYmA81VSpgAzEjvXM8YgLyDLeESq2pv2js6rllbH_UlsHRUjDgG9Mpp2xtIaO0kPOKrb1wV9lZZedCutR6X9a0GmHQ5Oxj_OyXIjztUueVjzDNL5pjfB6k9qYA0pywtW5vy_6w3FJDnm</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Hansen, Peter Nicholas</creator><creator>Papageorgiou, Dimitrios</creator><creator>Galeazzi, Roberto</creator><creator>Blanke, Mogens</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240208</creationdate><title>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</title><author>Hansen, Peter Nicholas ; Papageorgiou, Dimitrios ; Galeazzi, Roberto ; Blanke, Mogens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29240670863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Evaluation</topic><topic>Navigation</topic><topic>Sea vessels</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Peter Nicholas</creatorcontrib><creatorcontrib>Papageorgiou, Dimitrios</creatorcontrib><creatorcontrib>Galeazzi, Roberto</creatorcontrib><creatorcontrib>Blanke, Mogens</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Peter Nicholas</au><au>Papageorgiou, Dimitrios</au><au>Galeazzi, Roberto</au><au>Blanke, Mogens</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty</atitle><jtitle>arXiv.org</jtitle><date>2024-02-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The encounter situation between marine vessels determines how they should navigate to obey COLREGs, but time-varying and stochastic uncertainty in estimation of angles of encounter, and of closest point of approach, easily give rise to different assessment of situation at two approaching vessels. This may lead to high-risk conditions and could cause collision. This article considers decision making under uncertainty and suggests a novel method for probabilistic interpretation of vessel encounters that is explainable and provides a measure of uncertainty in the evaluation. The method is equally useful for decision support on a manned bridge as on Marine Autonomous Surface Ships (MASS) where it provides input for automated navigation. The method makes formal safety assessment and validation feasible. We obtain a resilient algorithm for machine interpretation of COLREGs under uncertainty and show its efficacy by simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2924067086 |
source | Free E- Journals |
subjects | Algorithms Evaluation Navigation Sea vessels Uncertainty |
title | Stochastic COLREGs Evaluation for Safe Navigation under Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20COLREGs%20Evaluation%20for%20Safe%20Navigation%20under%20Uncertainty&rft.jtitle=arXiv.org&rft.au=Hansen,%20Peter%20Nicholas&rft.date=2024-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2924067086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924067086&rft_id=info:pmid/&rfr_iscdi=true |