FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs

Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Choi, Eun Cheol, Ferrara, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Choi, Eun Cheol
Ferrara, Emilio
description Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social media content that aligns with, contradicts, or is irrelevant to previously debunked claims. Our evaluation shows that our specialized LLMs can match the accuracy of larger models in identifying related claims, closely mirroring human judgment. This research provides an automated solution for efficient claim matching, demonstrates the potential of LLMs in supporting fact-checkers, and offers valuable resources for further research in the field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2924066803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924066803</sourcerecordid><originalsourceid>FETCH-proquest_journals_29240668033</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdHN0DtF1DwixUnBLTC7Rdc5ITc7OzEtXcCxNz03NK0ksyczPUyjLTFRwzknMzFXwTSxJzgDJl2eWZCj4-PgW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGlkYmBmZmFgbExcaoAcko3fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924066803</pqid></control><display><type>article</type><title>FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs</title><source>Free E- Journals</source><creator>Choi, Eun Cheol ; Ferrara, Emilio</creator><creatorcontrib>Choi, Eun Cheol ; Ferrara, Emilio</creatorcontrib><description>Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social media content that aligns with, contradicts, or is irrelevant to previously debunked claims. Our evaluation shows that our specialized LLMs can match the accuracy of larger models in identifying related claims, closely mirroring human judgment. This research provides an automated solution for efficient claim matching, demonstrates the potential of LLMs in supporting fact-checkers, and offers valuable resources for further research in the field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models ; Matching ; Model accuracy ; Public health ; Synthetic data</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Choi, Eun Cheol</creatorcontrib><creatorcontrib>Ferrara, Emilio</creatorcontrib><title>FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs</title><title>arXiv.org</title><description>Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social media content that aligns with, contradicts, or is irrelevant to previously debunked claims. Our evaluation shows that our specialized LLMs can match the accuracy of larger models in identifying related claims, closely mirroring human judgment. This research provides an automated solution for efficient claim matching, demonstrates the potential of LLMs in supporting fact-checkers, and offers valuable resources for further research in the field.</description><subject>Large language models</subject><subject>Matching</subject><subject>Model accuracy</subject><subject>Public health</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdHN0DtF1DwixUnBLTC7Rdc5ITc7OzEtXcCxNz03NK0ksyczPUyjLTFRwzknMzFXwTSxJzgDJl2eWZCj4-PgW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGlkYmBmZmFgbExcaoAcko3fg</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Choi, Eun Cheol</creator><creator>Ferrara, Emilio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240208</creationdate><title>FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs</title><author>Choi, Eun Cheol ; Ferrara, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29240668033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Large language models</topic><topic>Matching</topic><topic>Model accuracy</topic><topic>Public health</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Eun Cheol</creatorcontrib><creatorcontrib>Ferrara, Emilio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Eun Cheol</au><au>Ferrara, Emilio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs</atitle><jtitle>arXiv.org</jtitle><date>2024-02-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social media content that aligns with, contradicts, or is irrelevant to previously debunked claims. Our evaluation shows that our specialized LLMs can match the accuracy of larger models in identifying related claims, closely mirroring human judgment. This research provides an automated solution for efficient claim matching, demonstrates the potential of LLMs in supporting fact-checkers, and offers valuable resources for further research in the field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2924066803
source Free E- Journals
subjects Large language models
Matching
Model accuracy
Public health
Synthetic data
title FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FACT-GPT:%20Fact-Checking%20Augmentation%20via%20Claim%20Matching%20with%20LLMs&rft.jtitle=arXiv.org&rft.au=Choi,%20Eun%20Cheol&rft.date=2024-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2924066803%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924066803&rft_id=info:pmid/&rfr_iscdi=true