A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics
The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the form...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2024-01, Vol.72 (1), p.100-109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 1 |
container_start_page | 100 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 72 |
creator | Amor-Martin, Adrian Garcia-Castillo, Luis E. Toth, Laszlo Levente Floch, Oliver Dyczij-Edlinger, Romanus |
description | The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables. |
doi_str_mv | 10.1109/TAP.2023.3294001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2924036948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184208</ieee_id><sourcerecordid>2924036948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a1a987cb65b01a2b92bf013206b702acb70c7c683f1837e20ef305cdc1a631293</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrcmk_3IHks_VKhYpIq3JZvOtindTU1SxP_e1Cp4mWHevDcDP0KuORtwzsq7xXA-AAZiIKBMGeMnpMezTCYAwE9JLyoyKSF_PycX3m_imMo07ZHPIX0xK-vs3tORXSJ9Q2cao1UwtqNzZzV6T21Dwxrp2LbKdHSM2rY7682P5wnD2i5p1BWdms4EpJMtttiFv1Vj3UHSwcX8qsNgtL8kZ43aerz67X3yOp0sRg_J7Pn-cTScJRrSLCSKq1IWus6zmnEFdQl1w7gAltcFA6Vj1YXOpWi4FAUCw0awTC81V7ngUIo-uT3e3Tn7sUcfqo3duy6-rKCElIm8TGV0saNLO-u9w6baOdMq91VxVh3wVhFvdcBb_eKNkZtjxCDiPzuXKTApvgECDHaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924036948</pqid></control><display><type>article</type><title>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</title><source>IEEE Electronic Library (IEL)</source><creator>Amor-Martin, Adrian ; Garcia-Castillo, Luis E. ; Toth, Laszlo Levente ; Floch, Oliver ; Dyczij-Edlinger, Romanus</creator><creatorcontrib>Amor-Martin, Adrian ; Garcia-Castillo, Luis E. ; Toth, Laszlo Levente ; Floch, Oliver ; Dyczij-Edlinger, Romanus</creatorcontrib><description>The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3294001</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Basis functions ; Boundary conditions ; Codes ; Convergence ; Domain decomposition method (DDM) ; Domain decomposition methods ; Electric fields ; Finite element analysis ; Finite element method ; finite element method (FEM) ; method of manufactured solutions (MMS) ; Prisms ; Surface treatment ; Tetrahedra ; Three-dimensional displays</subject><ispartof>IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.100-109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6123-4324 ; 0009-0006-8790-7626 ; 0000-0003-1210-2250 ; 0000-0003-3360-6634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amor-Martin, Adrian</creatorcontrib><creatorcontrib>Garcia-Castillo, Luis E.</creatorcontrib><creatorcontrib>Toth, Laszlo Levente</creatorcontrib><creatorcontrib>Floch, Oliver</creatorcontrib><creatorcontrib>Dyczij-Edlinger, Romanus</creatorcontrib><title>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.</description><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Codes</subject><subject>Convergence</subject><subject>Domain decomposition method (DDM)</subject><subject>Domain decomposition methods</subject><subject>Electric fields</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>method of manufactured solutions (MMS)</subject><subject>Prisms</subject><subject>Surface treatment</subject><subject>Tetrahedra</subject><subject>Three-dimensional displays</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrcmk_3IHks_VKhYpIq3JZvOtindTU1SxP_e1Cp4mWHevDcDP0KuORtwzsq7xXA-AAZiIKBMGeMnpMezTCYAwE9JLyoyKSF_PycX3m_imMo07ZHPIX0xK-vs3tORXSJ9Q2cao1UwtqNzZzV6T21Dwxrp2LbKdHSM2rY7682P5wnD2i5p1BWdms4EpJMtttiFv1Vj3UHSwcX8qsNgtL8kZ43aerz67X3yOp0sRg_J7Pn-cTScJRrSLCSKq1IWus6zmnEFdQl1w7gAltcFA6Vj1YXOpWi4FAUCw0awTC81V7ngUIo-uT3e3Tn7sUcfqo3duy6-rKCElIm8TGV0saNLO-u9w6baOdMq91VxVh3wVhFvdcBb_eKNkZtjxCDiPzuXKTApvgECDHaM</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Amor-Martin, Adrian</creator><creator>Garcia-Castillo, Luis E.</creator><creator>Toth, Laszlo Levente</creator><creator>Floch, Oliver</creator><creator>Dyczij-Edlinger, Romanus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6123-4324</orcidid><orcidid>https://orcid.org/0009-0006-8790-7626</orcidid><orcidid>https://orcid.org/0000-0003-1210-2250</orcidid><orcidid>https://orcid.org/0000-0003-3360-6634</orcidid></search><sort><creationdate>20240101</creationdate><title>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</title><author>Amor-Martin, Adrian ; Garcia-Castillo, Luis E. ; Toth, Laszlo Levente ; Floch, Oliver ; Dyczij-Edlinger, Romanus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a1a987cb65b01a2b92bf013206b702acb70c7c683f1837e20ef305cdc1a631293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Codes</topic><topic>Convergence</topic><topic>Domain decomposition method (DDM)</topic><topic>Domain decomposition methods</topic><topic>Electric fields</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>method of manufactured solutions (MMS)</topic><topic>Prisms</topic><topic>Surface treatment</topic><topic>Tetrahedra</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amor-Martin, Adrian</creatorcontrib><creatorcontrib>Garcia-Castillo, Luis E.</creatorcontrib><creatorcontrib>Toth, Laszlo Levente</creatorcontrib><creatorcontrib>Floch, Oliver</creatorcontrib><creatorcontrib>Dyczij-Edlinger, Romanus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amor-Martin, Adrian</au><au>Garcia-Castillo, Luis E.</au><au>Toth, Laszlo Levente</au><au>Floch, Oliver</au><au>Dyczij-Edlinger, Romanus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>72</volume><issue>1</issue><spage>100</spage><epage>109</epage><pages>100-109</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3294001</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6123-4324</orcidid><orcidid>https://orcid.org/0009-0006-8790-7626</orcidid><orcidid>https://orcid.org/0000-0003-1210-2250</orcidid><orcidid>https://orcid.org/0000-0003-3360-6634</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.100-109 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2924036948 |
source | IEEE Electronic Library (IEL) |
subjects | Basis functions Boundary conditions Codes Convergence Domain decomposition method (DDM) Domain decomposition methods Electric fields Finite element analysis Finite element method finite element method (FEM) method of manufactured solutions (MMS) Prisms Surface treatment Tetrahedra Three-dimensional displays |
title | A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rigorous%20Code%20Verification%20Process%20of%20the%20Domain%20Decomposition%20Method%20in%20a%20Finite%20Element%20Method%20for%20Electromagnetics&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Amor-Martin,%20Adrian&rft.date=2024-01-01&rft.volume=72&rft.issue=1&rft.spage=100&rft.epage=109&rft.pages=100-109&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3294001&rft_dat=%3Cproquest_RIE%3E2924036948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924036948&rft_id=info:pmid/&rft_ieee_id=10184208&rfr_iscdi=true |