A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics

The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2024-01, Vol.72 (1), p.100-109
Hauptverfasser: Amor-Martin, Adrian, Garcia-Castillo, Luis E., Toth, Laszlo Levente, Floch, Oliver, Dyczij-Edlinger, Romanus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 100
container_title IEEE transactions on antennas and propagation
container_volume 72
creator Amor-Martin, Adrian
Garcia-Castillo, Luis E.
Toth, Laszlo Levente
Floch, Oliver
Dyczij-Edlinger, Romanus
description The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.
doi_str_mv 10.1109/TAP.2023.3294001
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2924036948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184208</ieee_id><sourcerecordid>2924036948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a1a987cb65b01a2b92bf013206b702acb70c7c683f1837e20ef305cdc1a631293</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrcmk_3IHks_VKhYpIq3JZvOtindTU1SxP_e1Cp4mWHevDcDP0KuORtwzsq7xXA-AAZiIKBMGeMnpMezTCYAwE9JLyoyKSF_PycX3m_imMo07ZHPIX0xK-vs3tORXSJ9Q2cao1UwtqNzZzV6T21Dwxrp2LbKdHSM2rY7682P5wnD2i5p1BWdms4EpJMtttiFv1Vj3UHSwcX8qsNgtL8kZ43aerz67X3yOp0sRg_J7Pn-cTScJRrSLCSKq1IWus6zmnEFdQl1w7gAltcFA6Vj1YXOpWi4FAUCw0awTC81V7ngUIo-uT3e3Tn7sUcfqo3duy6-rKCElIm8TGV0saNLO-u9w6baOdMq91VxVh3wVhFvdcBb_eKNkZtjxCDiPzuXKTApvgECDHaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924036948</pqid></control><display><type>article</type><title>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</title><source>IEEE Electronic Library (IEL)</source><creator>Amor-Martin, Adrian ; Garcia-Castillo, Luis E. ; Toth, Laszlo Levente ; Floch, Oliver ; Dyczij-Edlinger, Romanus</creator><creatorcontrib>Amor-Martin, Adrian ; Garcia-Castillo, Luis E. ; Toth, Laszlo Levente ; Floch, Oliver ; Dyczij-Edlinger, Romanus</creatorcontrib><description>The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3294001</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Basis functions ; Boundary conditions ; Codes ; Convergence ; Domain decomposition method (DDM) ; Domain decomposition methods ; Electric fields ; Finite element analysis ; Finite element method ; finite element method (FEM) ; method of manufactured solutions (MMS) ; Prisms ; Surface treatment ; Tetrahedra ; Three-dimensional displays</subject><ispartof>IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.100-109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6123-4324 ; 0009-0006-8790-7626 ; 0000-0003-1210-2250 ; 0000-0003-3360-6634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amor-Martin, Adrian</creatorcontrib><creatorcontrib>Garcia-Castillo, Luis E.</creatorcontrib><creatorcontrib>Toth, Laszlo Levente</creatorcontrib><creatorcontrib>Floch, Oliver</creatorcontrib><creatorcontrib>Dyczij-Edlinger, Romanus</creatorcontrib><title>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.</description><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Codes</subject><subject>Convergence</subject><subject>Domain decomposition method (DDM)</subject><subject>Domain decomposition methods</subject><subject>Electric fields</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>method of manufactured solutions (MMS)</subject><subject>Prisms</subject><subject>Surface treatment</subject><subject>Tetrahedra</subject><subject>Three-dimensional displays</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrcmk_3IHks_VKhYpIq3JZvOtindTU1SxP_e1Cp4mWHevDcDP0KuORtwzsq7xXA-AAZiIKBMGeMnpMezTCYAwE9JLyoyKSF_PycX3m_imMo07ZHPIX0xK-vs3tORXSJ9Q2cao1UwtqNzZzV6T21Dwxrp2LbKdHSM2rY7682P5wnD2i5p1BWdms4EpJMtttiFv1Vj3UHSwcX8qsNgtL8kZ43aerz67X3yOp0sRg_J7Pn-cTScJRrSLCSKq1IWus6zmnEFdQl1w7gAltcFA6Vj1YXOpWi4FAUCw0awTC81V7ngUIo-uT3e3Tn7sUcfqo3duy6-rKCElIm8TGV0saNLO-u9w6baOdMq91VxVh3wVhFvdcBb_eKNkZtjxCDiPzuXKTApvgECDHaM</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Amor-Martin, Adrian</creator><creator>Garcia-Castillo, Luis E.</creator><creator>Toth, Laszlo Levente</creator><creator>Floch, Oliver</creator><creator>Dyczij-Edlinger, Romanus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6123-4324</orcidid><orcidid>https://orcid.org/0009-0006-8790-7626</orcidid><orcidid>https://orcid.org/0000-0003-1210-2250</orcidid><orcidid>https://orcid.org/0000-0003-3360-6634</orcidid></search><sort><creationdate>20240101</creationdate><title>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</title><author>Amor-Martin, Adrian ; Garcia-Castillo, Luis E. ; Toth, Laszlo Levente ; Floch, Oliver ; Dyczij-Edlinger, Romanus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a1a987cb65b01a2b92bf013206b702acb70c7c683f1837e20ef305cdc1a631293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Codes</topic><topic>Convergence</topic><topic>Domain decomposition method (DDM)</topic><topic>Domain decomposition methods</topic><topic>Electric fields</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>method of manufactured solutions (MMS)</topic><topic>Prisms</topic><topic>Surface treatment</topic><topic>Tetrahedra</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amor-Martin, Adrian</creatorcontrib><creatorcontrib>Garcia-Castillo, Luis E.</creatorcontrib><creatorcontrib>Toth, Laszlo Levente</creatorcontrib><creatorcontrib>Floch, Oliver</creatorcontrib><creatorcontrib>Dyczij-Edlinger, Romanus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amor-Martin, Adrian</au><au>Garcia-Castillo, Luis E.</au><au>Toth, Laszlo Levente</au><au>Floch, Oliver</au><au>Dyczij-Edlinger, Romanus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>72</volume><issue>1</issue><spage>100</spage><epage>109</epage><pages>100-109</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The finite element method (FEM) has benefited recently from the introduction of the domain decomposition method (DDM), especially to tackle large-scale problems. Many versions of DDM may be found in the literature, and almost none of them has used a rigorous approach to show the accuracy of the formulation. Here, we suggest the use of the method of manufactured solutions (MMS) to introduce DDM into an FEM code. This approach also allows us to debug the demanding coding process of the method. First, we introduce the mandatory operators used for DDM to construct second-order absorbing boundary conditions (ABCs). Then, we use these results to show the correct implementation of DDM with basis functions up to fourth order for tetrahedra, triangular prisms, and hexahedra, obtaining the convergence rates predicted by the classic FEM theory. Finally, we illustrate how to use MMS to test different formulations, assessing the effect of using different spaces and orders for the arising ancillary variables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3294001</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6123-4324</orcidid><orcidid>https://orcid.org/0009-0006-8790-7626</orcidid><orcidid>https://orcid.org/0000-0003-1210-2250</orcidid><orcidid>https://orcid.org/0000-0003-3360-6634</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.100-109
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2924036948
source IEEE Electronic Library (IEL)
subjects Basis functions
Boundary conditions
Codes
Convergence
Domain decomposition method (DDM)
Domain decomposition methods
Electric fields
Finite element analysis
Finite element method
finite element method (FEM)
method of manufactured solutions (MMS)
Prisms
Surface treatment
Tetrahedra
Three-dimensional displays
title A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rigorous%20Code%20Verification%20Process%20of%20the%20Domain%20Decomposition%20Method%20in%20a%20Finite%20Element%20Method%20for%20Electromagnetics&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Amor-Martin,%20Adrian&rft.date=2024-01-01&rft.volume=72&rft.issue=1&rft.spage=100&rft.epage=109&rft.pages=100-109&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3294001&rft_dat=%3Cproquest_RIE%3E2924036948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924036948&rft_id=info:pmid/&rft_ieee_id=10184208&rfr_iscdi=true