Majority Voting Ensemble Classifier for Detecting Keylogging Attack on Internet of Things
An intrusion attack on the Internet of Things (IoT) is any malicious activity or unauthorized access that jeopardizes the integrity and security of IoT systems, networks, or devices. Regarding IoT, intrusions can result in severe problems, including service disruption, data theft, privacy violations...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.19860-19871 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19871 |
---|---|
container_issue | |
container_start_page | 19860 |
container_title | IEEE access |
container_volume | 12 |
creator | Maz, Yahya Alhaj Anbar, Mohammed Manickam, Selvakumar Rihan, Shaza Dawood Ahmed Alabsi, Basim Ahmad Dorgham, Osama M. |
description | An intrusion attack on the Internet of Things (IoT) is any malicious activity or unauthorized access that jeopardizes the integrity and security of IoT systems, networks, or devices. Regarding IoT, intrusions can result in severe problems, including service disruption, data theft, privacy violations, and even bodily injury. One of the intrusion attacks is a keylogging attack, sometimes referred to as keystroke logging or keyboard capture, which is a type of cyberattack in which the attacker secretly observes and records keystrokes made on a device's keyboard. In the context of IoT, where connected objects communicate and exchange data, this assault may be especially concerning. Keylogging attacks can have severe repercussions in the IoT ecosystem since they can compromise sensitive information, including login passwords, personal information, financial information, or confidential communications. This paper explored the possibility of using an ensemble classifier to detect keylogging attacks in IoT networks. We built an ensemble classifier consisting of three classifiers: a convolutional neural network (CNN), a recurrent neural network (RNN), and a long-short memory network (LSTM). A proposed model uses the BoT-IoT dataset to detect a keylogging attack. Results show that the ensemble model can improve the model's performance. The ensemble model had excellent accuracy and a low false positive rate. It also had significantly improved detection rates for keylogging attacks than other classifiers. |
doi_str_mv | 10.1109/ACCESS.2024.3362232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2924036419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10419360</ieee_id><doaj_id>oai_doaj_org_article_8dcf478297cf4e28991aaf400ff01c54</doaj_id><sourcerecordid>2924036419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b217db15af14a4f2648bc90e398948200936112ecf3b78a75bfb0c1de3998d73</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAvgIMlzi1-JbGPVShQAeJAhcTJcpx1SQlxsd1D_x63Qah72dXszOxKk2VXBE8JwfJ2VlXzt7cpxZRPGSsoZfQkG1FSyAnLWXF6NJ9n4xDWOJVIUF6Oso8XvXa-jTv07mLbr9C8D_Bdd4CqTofQ2hY8ss6jO4hgDown2HVutdqPsxi1-UKuR4s-gu8hImfR8jPtwmV2ZnUXYPzXL7Ll_XxZPU6eXx8W1ex5Ylgu46SmpGxqkmtLuOaWFlzURmJgUkguKMaSFYRQMJbVpdBlXtsaG9IkghRNyS6yxWDbOL1WG99-a79TTrfqADi_UtrH1nSgRGMsLwWVZepAhZREa8sxthYTk_PkdTN4bbz72UKIau22vk_fKyopx6zgRCYWG1jGuxA82P-rBKt9ImpIRO0TUX-JJNX1oGoB4Eixdyww-wV6Noag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924036419</pqid></control><display><type>article</type><title>Majority Voting Ensemble Classifier for Detecting Keylogging Attack on Internet of Things</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Maz, Yahya Alhaj ; Anbar, Mohammed ; Manickam, Selvakumar ; Rihan, Shaza Dawood Ahmed ; Alabsi, Basim Ahmad ; Dorgham, Osama M.</creator><creatorcontrib>Maz, Yahya Alhaj ; Anbar, Mohammed ; Manickam, Selvakumar ; Rihan, Shaza Dawood Ahmed ; Alabsi, Basim Ahmad ; Dorgham, Osama M.</creatorcontrib><description>An intrusion attack on the Internet of Things (IoT) is any malicious activity or unauthorized access that jeopardizes the integrity and security of IoT systems, networks, or devices. Regarding IoT, intrusions can result in severe problems, including service disruption, data theft, privacy violations, and even bodily injury. One of the intrusion attacks is a keylogging attack, sometimes referred to as keystroke logging or keyboard capture, which is a type of cyberattack in which the attacker secretly observes and records keystrokes made on a device's keyboard. In the context of IoT, where connected objects communicate and exchange data, this assault may be especially concerning. Keylogging attacks can have severe repercussions in the IoT ecosystem since they can compromise sensitive information, including login passwords, personal information, financial information, or confidential communications. This paper explored the possibility of using an ensemble classifier to detect keylogging attacks in IoT networks. We built an ensemble classifier consisting of three classifiers: a convolutional neural network (CNN), a recurrent neural network (RNN), and a long-short memory network (LSTM). A proposed model uses the BoT-IoT dataset to detect a keylogging attack. Results show that the ensemble model can improve the model's performance. The ensemble model had excellent accuracy and a low false positive rate. It also had significantly improved detection rates for keylogging attacks than other classifiers.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3362232</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Access control ; Artificial neural networks ; Classification algorithms ; Classification tree analysis ; Classifiers ; Convolutional neural network ; Data exchange ; Ensemble learning ; Internet of Things ; Intrusion ; intrusion detection system ; Keyboards ; keylogging attacks ; long short-term memory network ; Model accuracy ; Neural networks ; Predictive models ; recurrent neural network ; Recurrent neural networks ; Security ; Theft ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.19860-19871</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-b217db15af14a4f2648bc90e398948200936112ecf3b78a75bfb0c1de3998d73</cites><orcidid>0000-0003-2987-8856 ; 0000-0002-7026-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10419360$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Maz, Yahya Alhaj</creatorcontrib><creatorcontrib>Anbar, Mohammed</creatorcontrib><creatorcontrib>Manickam, Selvakumar</creatorcontrib><creatorcontrib>Rihan, Shaza Dawood Ahmed</creatorcontrib><creatorcontrib>Alabsi, Basim Ahmad</creatorcontrib><creatorcontrib>Dorgham, Osama M.</creatorcontrib><title>Majority Voting Ensemble Classifier for Detecting Keylogging Attack on Internet of Things</title><title>IEEE access</title><addtitle>Access</addtitle><description>An intrusion attack on the Internet of Things (IoT) is any malicious activity or unauthorized access that jeopardizes the integrity and security of IoT systems, networks, or devices. Regarding IoT, intrusions can result in severe problems, including service disruption, data theft, privacy violations, and even bodily injury. One of the intrusion attacks is a keylogging attack, sometimes referred to as keystroke logging or keyboard capture, which is a type of cyberattack in which the attacker secretly observes and records keystrokes made on a device's keyboard. In the context of IoT, where connected objects communicate and exchange data, this assault may be especially concerning. Keylogging attacks can have severe repercussions in the IoT ecosystem since they can compromise sensitive information, including login passwords, personal information, financial information, or confidential communications. This paper explored the possibility of using an ensemble classifier to detect keylogging attacks in IoT networks. We built an ensemble classifier consisting of three classifiers: a convolutional neural network (CNN), a recurrent neural network (RNN), and a long-short memory network (LSTM). A proposed model uses the BoT-IoT dataset to detect a keylogging attack. Results show that the ensemble model can improve the model's performance. The ensemble model had excellent accuracy and a low false positive rate. It also had significantly improved detection rates for keylogging attacks than other classifiers.</description><subject>Access control</subject><subject>Artificial neural networks</subject><subject>Classification algorithms</subject><subject>Classification tree analysis</subject><subject>Classifiers</subject><subject>Convolutional neural network</subject><subject>Data exchange</subject><subject>Ensemble learning</subject><subject>Internet of Things</subject><subject>Intrusion</subject><subject>intrusion detection system</subject><subject>Keyboards</subject><subject>keylogging attacks</subject><subject>long short-term memory network</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>recurrent neural network</subject><subject>Recurrent neural networks</subject><subject>Security</subject><subject>Theft</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAvgIMlzi1-JbGPVShQAeJAhcTJcpx1SQlxsd1D_x63Qah72dXszOxKk2VXBE8JwfJ2VlXzt7cpxZRPGSsoZfQkG1FSyAnLWXF6NJ9n4xDWOJVIUF6Oso8XvXa-jTv07mLbr9C8D_Bdd4CqTofQ2hY8ss6jO4hgDown2HVutdqPsxi1-UKuR4s-gu8hImfR8jPtwmV2ZnUXYPzXL7Ll_XxZPU6eXx8W1ex5Ylgu46SmpGxqkmtLuOaWFlzURmJgUkguKMaSFYRQMJbVpdBlXtsaG9IkghRNyS6yxWDbOL1WG99-a79TTrfqADi_UtrH1nSgRGMsLwWVZepAhZREa8sxthYTk_PkdTN4bbz72UKIau22vk_fKyopx6zgRCYWG1jGuxA82P-rBKt9ImpIRO0TUX-JJNX1oGoB4Eixdyww-wV6Noag</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Maz, Yahya Alhaj</creator><creator>Anbar, Mohammed</creator><creator>Manickam, Selvakumar</creator><creator>Rihan, Shaza Dawood Ahmed</creator><creator>Alabsi, Basim Ahmad</creator><creator>Dorgham, Osama M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2987-8856</orcidid><orcidid>https://orcid.org/0000-0002-7026-6408</orcidid></search><sort><creationdate>2024</creationdate><title>Majority Voting Ensemble Classifier for Detecting Keylogging Attack on Internet of Things</title><author>Maz, Yahya Alhaj ; Anbar, Mohammed ; Manickam, Selvakumar ; Rihan, Shaza Dawood Ahmed ; Alabsi, Basim Ahmad ; Dorgham, Osama M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b217db15af14a4f2648bc90e398948200936112ecf3b78a75bfb0c1de3998d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Access control</topic><topic>Artificial neural networks</topic><topic>Classification algorithms</topic><topic>Classification tree analysis</topic><topic>Classifiers</topic><topic>Convolutional neural network</topic><topic>Data exchange</topic><topic>Ensemble learning</topic><topic>Internet of Things</topic><topic>Intrusion</topic><topic>intrusion detection system</topic><topic>Keyboards</topic><topic>keylogging attacks</topic><topic>long short-term memory network</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>recurrent neural network</topic><topic>Recurrent neural networks</topic><topic>Security</topic><topic>Theft</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maz, Yahya Alhaj</creatorcontrib><creatorcontrib>Anbar, Mohammed</creatorcontrib><creatorcontrib>Manickam, Selvakumar</creatorcontrib><creatorcontrib>Rihan, Shaza Dawood Ahmed</creatorcontrib><creatorcontrib>Alabsi, Basim Ahmad</creatorcontrib><creatorcontrib>Dorgham, Osama M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maz, Yahya Alhaj</au><au>Anbar, Mohammed</au><au>Manickam, Selvakumar</au><au>Rihan, Shaza Dawood Ahmed</au><au>Alabsi, Basim Ahmad</au><au>Dorgham, Osama M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Majority Voting Ensemble Classifier for Detecting Keylogging Attack on Internet of Things</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>19860</spage><epage>19871</epage><pages>19860-19871</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>An intrusion attack on the Internet of Things (IoT) is any malicious activity or unauthorized access that jeopardizes the integrity and security of IoT systems, networks, or devices. Regarding IoT, intrusions can result in severe problems, including service disruption, data theft, privacy violations, and even bodily injury. One of the intrusion attacks is a keylogging attack, sometimes referred to as keystroke logging or keyboard capture, which is a type of cyberattack in which the attacker secretly observes and records keystrokes made on a device's keyboard. In the context of IoT, where connected objects communicate and exchange data, this assault may be especially concerning. Keylogging attacks can have severe repercussions in the IoT ecosystem since they can compromise sensitive information, including login passwords, personal information, financial information, or confidential communications. This paper explored the possibility of using an ensemble classifier to detect keylogging attacks in IoT networks. We built an ensemble classifier consisting of three classifiers: a convolutional neural network (CNN), a recurrent neural network (RNN), and a long-short memory network (LSTM). A proposed model uses the BoT-IoT dataset to detect a keylogging attack. Results show that the ensemble model can improve the model's performance. The ensemble model had excellent accuracy and a low false positive rate. It also had significantly improved detection rates for keylogging attacks than other classifiers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3362232</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2987-8856</orcidid><orcidid>https://orcid.org/0000-0002-7026-6408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.19860-19871 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2924036419 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Access control Artificial neural networks Classification algorithms Classification tree analysis Classifiers Convolutional neural network Data exchange Ensemble learning Internet of Things Intrusion intrusion detection system Keyboards keylogging attacks long short-term memory network Model accuracy Neural networks Predictive models recurrent neural network Recurrent neural networks Security Theft Training |
title | Majority Voting Ensemble Classifier for Detecting Keylogging Attack on Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Majority%20Voting%20Ensemble%20Classifier%20for%20Detecting%20Keylogging%20Attack%20on%20Internet%20of%20Things&rft.jtitle=IEEE%20access&rft.au=Maz,%20Yahya%20Alhaj&rft.date=2024&rft.volume=12&rft.spage=19860&rft.epage=19871&rft.pages=19860-19871&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3362232&rft_dat=%3Cproquest_doaj_%3E2924036419%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924036419&rft_id=info:pmid/&rft_ieee_id=10419360&rft_doaj_id=oai_doaj_org_article_8dcf478297cf4e28991aaf400ff01c54&rfr_iscdi=true |