Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems
Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.278 (4), p.661-674 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 4 |
container_start_page | 661 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 278 |
creator | Saburov, M. Saburov, Kh |
description | Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results. |
doi_str_mv | 10.1007/s10958-024-06947-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923950685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923950685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185y-e3d92b7ebd73a27f8587d173453933e79f770a6be606c7ab970376f7c55db08d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GkaTrJcVn8B7KrqOeQpql26TY1aQ_99mat4M3TvBne7w08hC4ZvWaUwk1kVAlJaJYTWqgcyHSEFkwAJxKUOE6aQkY4h_wUncW4owkqJF-gzarv28aaofFdxL7GL6OpQlotfh28_TTxILe9SzcfIh483viubTpnAl4nxnVxjPg5-LJ1-3iOTmrTRnfxO5fo_e72bf1Anrb3j-vVE7FMiok4XqmsBFdWwE0GtRQSKgY8F1xx7kDVANQUpStoYcGUCiiHogYrRFVSWfEluppz--C_RhcHvfNj6NJLnamMK0ELKZIrm102-BiDq3Ufmr0Jk2ZUH3rTc2869aZ_etNTgvgMxWTuPlz4i_6H-gYG7nF_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923950685</pqid></control><display><type>article</type><title>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saburov, M. ; Saburov, Kh</creator><creatorcontrib>Saburov, M. ; Saburov, Kh</creatorcontrib><description>Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-06947-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Multiagent systems ; Operators</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.278 (4), p.661-674</ispartof><rights>Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185y-e3d92b7ebd73a27f8587d173453933e79f770a6be606c7ab970376f7c55db08d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-024-06947-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-024-06947-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saburov, M.</creatorcontrib><creatorcontrib>Saburov, Kh</creatorcontrib><title>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiagent systems</subject><subject>Operators</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GkaTrJcVn8B7KrqOeQpql26TY1aQ_99mat4M3TvBne7w08hC4ZvWaUwk1kVAlJaJYTWqgcyHSEFkwAJxKUOE6aQkY4h_wUncW4owkqJF-gzarv28aaofFdxL7GL6OpQlotfh28_TTxILe9SzcfIh483viubTpnAl4nxnVxjPg5-LJ1-3iOTmrTRnfxO5fo_e72bf1Anrb3j-vVE7FMiok4XqmsBFdWwE0GtRQSKgY8F1xx7kDVANQUpStoYcGUCiiHogYrRFVSWfEluppz--C_RhcHvfNj6NJLnamMK0ELKZIrm102-BiDq3Ufmr0Jk2ZUH3rTc2869aZ_etNTgvgMxWTuPlz4i_6H-gYG7nF_</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saburov, M.</creator><creator>Saburov, Kh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</title><author>Saburov, M. ; Saburov, Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185y-e3d92b7ebd73a27f8587d173453933e79f770a6be606c7ab970376f7c55db08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiagent systems</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saburov, M.</creatorcontrib><creatorcontrib>Saburov, Kh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saburov, M.</au><au>Saburov, Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>278</volume><issue>4</issue><spage>661</spage><epage>674</epage><pages>661-674</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-06947-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2024, Vol.278 (4), p.661-674 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2923950685 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics Multiagent systems Operators |
title | Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Quadratic%20Stochastic%20Operators%20to%20Nonlinear%20Consensus%20Problems&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Saburov,%20M.&rft.date=2024&rft.volume=278&rft.issue=4&rft.spage=661&rft.epage=674&rft.pages=661-674&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-06947-y&rft_dat=%3Cproquest_cross%3E2923950685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923950685&rft_id=info:pmid/&rfr_iscdi=true |