Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems

Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.278 (4), p.661-674
Hauptverfasser: Saburov, M., Saburov, Kh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 4
container_start_page 661
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 278
creator Saburov, M.
Saburov, Kh
description Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.
doi_str_mv 10.1007/s10958-024-06947-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923950685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923950685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185y-e3d92b7ebd73a27f8587d173453933e79f770a6be606c7ab970376f7c55db08d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GkaTrJcVn8B7KrqOeQpql26TY1aQ_99mat4M3TvBne7w08hC4ZvWaUwk1kVAlJaJYTWqgcyHSEFkwAJxKUOE6aQkY4h_wUncW4owkqJF-gzarv28aaofFdxL7GL6OpQlotfh28_TTxILe9SzcfIh483viubTpnAl4nxnVxjPg5-LJ1-3iOTmrTRnfxO5fo_e72bf1Anrb3j-vVE7FMiok4XqmsBFdWwE0GtRQSKgY8F1xx7kDVANQUpStoYcGUCiiHogYrRFVSWfEluppz--C_RhcHvfNj6NJLnamMK0ELKZIrm102-BiDq3Ufmr0Jk2ZUH3rTc2869aZ_etNTgvgMxWTuPlz4i_6H-gYG7nF_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923950685</pqid></control><display><type>article</type><title>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saburov, M. ; Saburov, Kh</creator><creatorcontrib>Saburov, M. ; Saburov, Kh</creatorcontrib><description>Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-06947-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Multiagent systems ; Operators</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.278 (4), p.661-674</ispartof><rights>Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185y-e3d92b7ebd73a27f8587d173453933e79f770a6be606c7ab970376f7c55db08d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-024-06947-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-024-06947-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saburov, M.</creatorcontrib><creatorcontrib>Saburov, Kh</creatorcontrib><title>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiagent systems</subject><subject>Operators</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GkaTrJcVn8B7KrqOeQpql26TY1aQ_99mat4M3TvBne7w08hC4ZvWaUwk1kVAlJaJYTWqgcyHSEFkwAJxKUOE6aQkY4h_wUncW4owkqJF-gzarv28aaofFdxL7GL6OpQlotfh28_TTxILe9SzcfIh483viubTpnAl4nxnVxjPg5-LJ1-3iOTmrTRnfxO5fo_e72bf1Anrb3j-vVE7FMiok4XqmsBFdWwE0GtRQSKgY8F1xx7kDVANQUpStoYcGUCiiHogYrRFVSWfEluppz--C_RhcHvfNj6NJLnamMK0ELKZIrm102-BiDq3Ufmr0Jk2ZUH3rTc2869aZ_etNTgvgMxWTuPlz4i_6H-gYG7nF_</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saburov, M.</creator><creator>Saburov, Kh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</title><author>Saburov, M. ; Saburov, Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185y-e3d92b7ebd73a27f8587d173453933e79f770a6be606c7ab970376f7c55db08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiagent systems</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saburov, M.</creatorcontrib><creatorcontrib>Saburov, Kh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saburov, M.</au><au>Saburov, Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>278</volume><issue>4</issue><spage>661</spage><epage>674</epage><pages>661-674</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Historically, an idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since that time, the consensus which is the most ubiquitous phenomenon of multiagent systems becomes popular in the various scientific fields such as biology, physics, control engineering, and social science. In this paper, we overview the recent development of applications of quadratic stochastic operators on nonlinear consensus problems. We also present some refinement and improvement of the previous results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-06947-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2024, Vol.278 (4), p.661-674
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2923950685
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
Multiagent systems
Operators
title Applications of Quadratic Stochastic Operators to Nonlinear Consensus Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Quadratic%20Stochastic%20Operators%20to%20Nonlinear%20Consensus%20Problems&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Saburov,%20M.&rft.date=2024&rft.volume=278&rft.issue=4&rft.spage=661&rft.epage=674&rft.pages=661-674&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-06947-y&rft_dat=%3Cproquest_cross%3E2923950685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923950685&rft_id=info:pmid/&rfr_iscdi=true