Improving the resolution of poststack seismic data based on UNet+GRU deep learning method

Most existing seismic data frequency enhancement methods have limitations. Given the advantages and disadvantages of these methods, this study attempts to apply deep learning technology to improve seismic data resolution. First, on the basis of the UNet deep learning method, which combines well-logg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2023-06, Vol.20 (2), p.176-185
Hauptverfasser: Guo, Ai-Hua, Lu, Peng-Fei, Wang, Dan-Dan, Wu, Ji-zhong, Xiao, Chen, Peng, Huai-Yu, Jiang, Shu-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 2
container_start_page 176
container_title Applied geophysics
container_volume 20
creator Guo, Ai-Hua
Lu, Peng-Fei
Wang, Dan-Dan
Wu, Ji-zhong
Xiao, Chen
Peng, Huai-Yu
Jiang, Shu-Hao
description Most existing seismic data frequency enhancement methods have limitations. Given the advantages and disadvantages of these methods, this study attempts to apply deep learning technology to improve seismic data resolution. First, on the basis of the UNet deep learning method, which combines well-logging and seismic data, a synthetic seismic record is established with logging acoustic data and density, the borehole synthetic seismic record is labeled, and the borehole seismic trace data are taken as the input data. The training model of the borehole seismic trace data and the borehole synthetic seismic record is established to improve the medium- and high-frequency information in the seismic data. Second, the gate recurrent unit (GRU) is used to retain the low-frequency trend in the original seismic record, and the UNet and GRU results are combined to improve the medium- and high-frequency information while preserving the low-frequency information in the seismic data. Then, model training is performed, the model is applied to the three-dimensional seismic data volume for calculation, and the seismic data resolution is improved. The information extracted using our method is more abundant than that extracted using previous methods. The application of a theoretical model and actual field data shows that our method is effective in improving the resolution of poststack seismic data.
doi_str_mv 10.1007/s11770-023-1038-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923950187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923950187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2317-d0f1cfd084659c14174294d7abe74a3ed382bee52949fc79621aabc56d22c2603</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOH78AHcBlxLNR9s0Sxl0HBgUxFm4CmnyOtNx2tSkI_jvTangylUe4dz7eAehK0ZvGaXyLjImJSWUC8KoKIk8QjOmlCC0yMvjNBeSE6lkforOYtxRWgheZDP0vmz74L-aboOHLeAA0e8PQ-M77Gvc-zjEwdgPHKGJbWOxM4PBlYngcELWzzDcLF7X2AH0eA8mdGNRC8PWuwt0Upt9hMvf9xytHx_e5k9k9bJYzu9XxHLBJHG0ZrZ2tMyKXFmWMZlxlTlpKpCZEeBEySuAPH2q2kpVcGZMZfPCcW55QcU5up560x2fB4iD3vlD6NJKzRUXKqeslIliE2WDjzFArfvQtCZ8a0b1aFBPBnUyqEeDeszwKRMT220g_DX_H_oBPANzFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923950187</pqid></control><display><type>article</type><title>Improving the resolution of poststack seismic data based on UNet+GRU deep learning method</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Ai-Hua ; Lu, Peng-Fei ; Wang, Dan-Dan ; Wu, Ji-zhong ; Xiao, Chen ; Peng, Huai-Yu ; Jiang, Shu-Hao</creator><creatorcontrib>Guo, Ai-Hua ; Lu, Peng-Fei ; Wang, Dan-Dan ; Wu, Ji-zhong ; Xiao, Chen ; Peng, Huai-Yu ; Jiang, Shu-Hao</creatorcontrib><description>Most existing seismic data frequency enhancement methods have limitations. Given the advantages and disadvantages of these methods, this study attempts to apply deep learning technology to improve seismic data resolution. First, on the basis of the UNet deep learning method, which combines well-logging and seismic data, a synthetic seismic record is established with logging acoustic data and density, the borehole synthetic seismic record is labeled, and the borehole seismic trace data are taken as the input data. The training model of the borehole seismic trace data and the borehole synthetic seismic record is established to improve the medium- and high-frequency information in the seismic data. Second, the gate recurrent unit (GRU) is used to retain the low-frequency trend in the original seismic record, and the UNet and GRU results are combined to improve the medium- and high-frequency information while preserving the low-frequency information in the seismic data. Then, model training is performed, the model is applied to the three-dimensional seismic data volume for calculation, and the seismic data resolution is improved. The information extracted using our method is more abundant than that extracted using previous methods. The application of a theoretical model and actual field data shows that our method is effective in improving the resolution of poststack seismic data.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-023-1038-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic data ; Boreholes ; Data logging ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Logging ; Seismic activity ; Seismic data ; Seismic Data Processing ; Seismological data ; Teaching methods ; Training</subject><ispartof>Applied geophysics, 2023-06, Vol.20 (2), p.176-185</ispartof><rights>The Editorial Department of APPLIED GEOPHYSICS 2023</rights><rights>The Editorial Department of APPLIED GEOPHYSICS 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2317-d0f1cfd084659c14174294d7abe74a3ed382bee52949fc79621aabc56d22c2603</citedby><cites>FETCH-LOGICAL-c2317-d0f1cfd084659c14174294d7abe74a3ed382bee52949fc79621aabc56d22c2603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-023-1038-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-023-1038-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Guo, Ai-Hua</creatorcontrib><creatorcontrib>Lu, Peng-Fei</creatorcontrib><creatorcontrib>Wang, Dan-Dan</creatorcontrib><creatorcontrib>Wu, Ji-zhong</creatorcontrib><creatorcontrib>Xiao, Chen</creatorcontrib><creatorcontrib>Peng, Huai-Yu</creatorcontrib><creatorcontrib>Jiang, Shu-Hao</creatorcontrib><title>Improving the resolution of poststack seismic data based on UNet+GRU deep learning method</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>Most existing seismic data frequency enhancement methods have limitations. Given the advantages and disadvantages of these methods, this study attempts to apply deep learning technology to improve seismic data resolution. First, on the basis of the UNet deep learning method, which combines well-logging and seismic data, a synthetic seismic record is established with logging acoustic data and density, the borehole synthetic seismic record is labeled, and the borehole seismic trace data are taken as the input data. The training model of the borehole seismic trace data and the borehole synthetic seismic record is established to improve the medium- and high-frequency information in the seismic data. Second, the gate recurrent unit (GRU) is used to retain the low-frequency trend in the original seismic record, and the UNet and GRU results are combined to improve the medium- and high-frequency information while preserving the low-frequency information in the seismic data. Then, model training is performed, the model is applied to the three-dimensional seismic data volume for calculation, and the seismic data resolution is improved. The information extracted using our method is more abundant than that extracted using previous methods. The application of a theoretical model and actual field data shows that our method is effective in improving the resolution of poststack seismic data.</description><subject>Acoustic data</subject><subject>Boreholes</subject><subject>Data logging</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Logging</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>Seismic Data Processing</subject><subject>Seismological data</subject><subject>Teaching methods</subject><subject>Training</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOH78AHcBlxLNR9s0Sxl0HBgUxFm4CmnyOtNx2tSkI_jvTangylUe4dz7eAehK0ZvGaXyLjImJSWUC8KoKIk8QjOmlCC0yMvjNBeSE6lkforOYtxRWgheZDP0vmz74L-aboOHLeAA0e8PQ-M77Gvc-zjEwdgPHKGJbWOxM4PBlYngcELWzzDcLF7X2AH0eA8mdGNRC8PWuwt0Upt9hMvf9xytHx_e5k9k9bJYzu9XxHLBJHG0ZrZ2tMyKXFmWMZlxlTlpKpCZEeBEySuAPH2q2kpVcGZMZfPCcW55QcU5up560x2fB4iD3vlD6NJKzRUXKqeslIliE2WDjzFArfvQtCZ8a0b1aFBPBnUyqEeDeszwKRMT220g_DX_H_oBPANzFA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Guo, Ai-Hua</creator><creator>Lu, Peng-Fei</creator><creator>Wang, Dan-Dan</creator><creator>Wu, Ji-zhong</creator><creator>Xiao, Chen</creator><creator>Peng, Huai-Yu</creator><creator>Jiang, Shu-Hao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20230601</creationdate><title>Improving the resolution of poststack seismic data based on UNet+GRU deep learning method</title><author>Guo, Ai-Hua ; Lu, Peng-Fei ; Wang, Dan-Dan ; Wu, Ji-zhong ; Xiao, Chen ; Peng, Huai-Yu ; Jiang, Shu-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2317-d0f1cfd084659c14174294d7abe74a3ed382bee52949fc79621aabc56d22c2603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic data</topic><topic>Boreholes</topic><topic>Data logging</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Logging</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>Seismic Data Processing</topic><topic>Seismological data</topic><topic>Teaching methods</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ai-Hua</creatorcontrib><creatorcontrib>Lu, Peng-Fei</creatorcontrib><creatorcontrib>Wang, Dan-Dan</creatorcontrib><creatorcontrib>Wu, Ji-zhong</creatorcontrib><creatorcontrib>Xiao, Chen</creatorcontrib><creatorcontrib>Peng, Huai-Yu</creatorcontrib><creatorcontrib>Jiang, Shu-Hao</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ai-Hua</au><au>Lu, Peng-Fei</au><au>Wang, Dan-Dan</au><au>Wu, Ji-zhong</au><au>Xiao, Chen</au><au>Peng, Huai-Yu</au><au>Jiang, Shu-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the resolution of poststack seismic data based on UNet+GRU deep learning method</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>176</spage><epage>185</epage><pages>176-185</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>Most existing seismic data frequency enhancement methods have limitations. Given the advantages and disadvantages of these methods, this study attempts to apply deep learning technology to improve seismic data resolution. First, on the basis of the UNet deep learning method, which combines well-logging and seismic data, a synthetic seismic record is established with logging acoustic data and density, the borehole synthetic seismic record is labeled, and the borehole seismic trace data are taken as the input data. The training model of the borehole seismic trace data and the borehole synthetic seismic record is established to improve the medium- and high-frequency information in the seismic data. Second, the gate recurrent unit (GRU) is used to retain the low-frequency trend in the original seismic record, and the UNet and GRU results are combined to improve the medium- and high-frequency information while preserving the low-frequency information in the seismic data. Then, model training is performed, the model is applied to the three-dimensional seismic data volume for calculation, and the seismic data resolution is improved. The information extracted using our method is more abundant than that extracted using previous methods. The application of a theoretical model and actual field data shows that our method is effective in improving the resolution of poststack seismic data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11770-023-1038-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2023-06, Vol.20 (2), p.176-185
issn 1672-7975
1993-0658
language eng
recordid cdi_proquest_journals_2923950187
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Acoustic data
Boreholes
Data logging
Deep learning
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Logging
Seismic activity
Seismic data
Seismic Data Processing
Seismological data
Teaching methods
Training
title Improving the resolution of poststack seismic data based on UNet+GRU deep learning method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20resolution%20of%20poststack%20seismic%20data%20based%20on%20UNet+GRU%20deep%20learning%20method&rft.jtitle=Applied%20geophysics&rft.au=Guo,%20Ai-Hua&rft.date=2023-06-01&rft.volume=20&rft.issue=2&rft.spage=176&rft.epage=185&rft.pages=176-185&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-023-1038-7&rft_dat=%3Cproquest_cross%3E2923950187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923950187&rft_id=info:pmid/&rfr_iscdi=true