Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework

Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-02, Vol.13 (3), p.477
Hauptverfasser: Karanik, Marcelo, Bernabé-Sánchez, Iván, Fernández, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 477
container_title Electronics (Basel)
container_volume 13
creator Karanik, Marcelo
Bernabé-Sánchez, Iván
Fernández, Alberto
description Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.
doi_str_mv 10.3390/electronics13030477
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2923905458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782089476</galeid><sourcerecordid>A782089476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ca7c17a4bcfb38da0d2b1b8f57af09632cde6ee224d83c03391da4aa8025c35e3</originalsourceid><addsrcrecordid>eNptUclOwzAQtRBIVNAv4GKJc4qXpEm4RVELSEU9UM6RY09SF8cudlrE3-OqHDgwM9IserPoDUJ3lMw4L8kDGJCjd1bLQDnhJM3zCzRhJC-TkpXs8k98jaYh7EiUkvKCkwkyazs643othcGvToHRtsfCKlybQxjBn9INyK3VnwcIuHMev4E_agm4MsZJMWpncbRxC3ihenjEFa7dsPewBRv0EfDSiwG-nP-4RVedMAGmv_4GvS8Xm_o5Wa2fXupqlUhO6ZhIkUuai7SVXcsLJYhiLW2LLstFR8o5Z1LBHICxVBVckkgCVSIVoiAskzwDfoPuz3P33p2uHpudO3gbVzaRhMhZlmZFRM3OqF4YaLTt3OiFjKpg0NJZ6HSsV3nBSFGm-Tw28HOD9C4ED12z93oQ_ruhpDm9ovnnFfwHOkaAuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923905458</pqid></control><display><type>article</type><title>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Karanik, Marcelo ; Bernabé-Sánchez, Iván ; Fernández, Alberto</creator><creatorcontrib>Karanik, Marcelo ; Bernabé-Sánchez, Iván ; Fernández, Alberto</creatorcontrib><description>Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13030477</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Allocations ; Cloud computing ; Clustering ; Clustering (Computers) ; Connectivity ; Edge computing ; Energy consumption ; Graph representations ; Internet of Things ; Interoperability ; Knowledge representation ; Load balancing (Computers) ; Methods ; Nodes ; Ontology ; Resource allocation ; Semantics ; Sensors ; Smart cities ; Software ; Software services</subject><ispartof>Electronics (Basel), 2024-02, Vol.13 (3), p.477</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-ca7c17a4bcfb38da0d2b1b8f57af09632cde6ee224d83c03391da4aa8025c35e3</cites><orcidid>0000-0001-8848-3681 ; 0000-0002-9229-3466 ; 0000-0002-8962-6856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karanik, Marcelo</creatorcontrib><creatorcontrib>Bernabé-Sánchez, Iván</creatorcontrib><creatorcontrib>Fernández, Alberto</creatorcontrib><title>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</title><title>Electronics (Basel)</title><description>Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.</description><subject>Allocations</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Clustering (Computers)</subject><subject>Connectivity</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Graph representations</subject><subject>Internet of Things</subject><subject>Interoperability</subject><subject>Knowledge representation</subject><subject>Load balancing (Computers)</subject><subject>Methods</subject><subject>Nodes</subject><subject>Ontology</subject><subject>Resource allocation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>Software</subject><subject>Software services</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUclOwzAQtRBIVNAv4GKJc4qXpEm4RVELSEU9UM6RY09SF8cudlrE3-OqHDgwM9IserPoDUJ3lMw4L8kDGJCjd1bLQDnhJM3zCzRhJC-TkpXs8k98jaYh7EiUkvKCkwkyazs643othcGvToHRtsfCKlybQxjBn9INyK3VnwcIuHMev4E_agm4MsZJMWpncbRxC3ihenjEFa7dsPewBRv0EfDSiwG-nP-4RVedMAGmv_4GvS8Xm_o5Wa2fXupqlUhO6ZhIkUuai7SVXcsLJYhiLW2LLstFR8o5Z1LBHICxVBVckkgCVSIVoiAskzwDfoPuz3P33p2uHpudO3gbVzaRhMhZlmZFRM3OqF4YaLTt3OiFjKpg0NJZ6HSsV3nBSFGm-Tw28HOD9C4ED12z93oQ_ruhpDm9ovnnFfwHOkaAuw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Karanik, Marcelo</creator><creator>Bernabé-Sánchez, Iván</creator><creator>Fernández, Alberto</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8848-3681</orcidid><orcidid>https://orcid.org/0000-0002-9229-3466</orcidid><orcidid>https://orcid.org/0000-0002-8962-6856</orcidid></search><sort><creationdate>20240201</creationdate><title>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</title><author>Karanik, Marcelo ; Bernabé-Sánchez, Iván ; Fernández, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ca7c17a4bcfb38da0d2b1b8f57af09632cde6ee224d83c03391da4aa8025c35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Allocations</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Clustering (Computers)</topic><topic>Connectivity</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Graph representations</topic><topic>Internet of Things</topic><topic>Interoperability</topic><topic>Knowledge representation</topic><topic>Load balancing (Computers)</topic><topic>Methods</topic><topic>Nodes</topic><topic>Ontology</topic><topic>Resource allocation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>Software</topic><topic>Software services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karanik, Marcelo</creatorcontrib><creatorcontrib>Bernabé-Sánchez, Iván</creatorcontrib><creatorcontrib>Fernández, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karanik, Marcelo</au><au>Bernabé-Sánchez, Iván</au><au>Fernández, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>3</issue><spage>477</spage><pages>477-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13030477</doi><orcidid>https://orcid.org/0000-0001-8848-3681</orcidid><orcidid>https://orcid.org/0000-0002-9229-3466</orcidid><orcidid>https://orcid.org/0000-0002-8962-6856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-02, Vol.13 (3), p.477
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2923905458
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Allocations
Cloud computing
Clustering
Clustering (Computers)
Connectivity
Edge computing
Energy consumption
Graph representations
Internet of Things
Interoperability
Knowledge representation
Load balancing (Computers)
Methods
Nodes
Ontology
Resource allocation
Semantics
Sensors
Smart cities
Software
Software services
title Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ontological%20Modeling%20and%20Clustering%20Techniques%20for%20Service%20Allocation%20on%20the%20Edge:%20A%20Comprehensive%20Framework&rft.jtitle=Electronics%20(Basel)&rft.au=Karanik,%20Marcelo&rft.date=2024-02-01&rft.volume=13&rft.issue=3&rft.spage=477&rft.pages=477-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13030477&rft_dat=%3Cgale_proqu%3EA782089476%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923905458&rft_id=info:pmid/&rft_galeid=A782089476&rfr_iscdi=true