Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework
Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-02, Vol.13 (3), p.477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 477 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Karanik, Marcelo Bernabé-Sánchez, Iván Fernández, Alberto |
description | Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload. |
doi_str_mv | 10.3390/electronics13030477 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2923905458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782089476</galeid><sourcerecordid>A782089476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ca7c17a4bcfb38da0d2b1b8f57af09632cde6ee224d83c03391da4aa8025c35e3</originalsourceid><addsrcrecordid>eNptUclOwzAQtRBIVNAv4GKJc4qXpEm4RVELSEU9UM6RY09SF8cudlrE3-OqHDgwM9IserPoDUJ3lMw4L8kDGJCjd1bLQDnhJM3zCzRhJC-TkpXs8k98jaYh7EiUkvKCkwkyazs643othcGvToHRtsfCKlybQxjBn9INyK3VnwcIuHMev4E_agm4MsZJMWpncbRxC3ihenjEFa7dsPewBRv0EfDSiwG-nP-4RVedMAGmv_4GvS8Xm_o5Wa2fXupqlUhO6ZhIkUuai7SVXcsLJYhiLW2LLstFR8o5Z1LBHICxVBVckkgCVSIVoiAskzwDfoPuz3P33p2uHpudO3gbVzaRhMhZlmZFRM3OqF4YaLTt3OiFjKpg0NJZ6HSsV3nBSFGm-Tw28HOD9C4ED12z93oQ_ruhpDm9ovnnFfwHOkaAuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923905458</pqid></control><display><type>article</type><title>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Karanik, Marcelo ; Bernabé-Sánchez, Iván ; Fernández, Alberto</creator><creatorcontrib>Karanik, Marcelo ; Bernabé-Sánchez, Iván ; Fernández, Alberto</creatorcontrib><description>Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13030477</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Allocations ; Cloud computing ; Clustering ; Clustering (Computers) ; Connectivity ; Edge computing ; Energy consumption ; Graph representations ; Internet of Things ; Interoperability ; Knowledge representation ; Load balancing (Computers) ; Methods ; Nodes ; Ontology ; Resource allocation ; Semantics ; Sensors ; Smart cities ; Software ; Software services</subject><ispartof>Electronics (Basel), 2024-02, Vol.13 (3), p.477</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-ca7c17a4bcfb38da0d2b1b8f57af09632cde6ee224d83c03391da4aa8025c35e3</cites><orcidid>0000-0001-8848-3681 ; 0000-0002-9229-3466 ; 0000-0002-8962-6856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karanik, Marcelo</creatorcontrib><creatorcontrib>Bernabé-Sánchez, Iván</creatorcontrib><creatorcontrib>Fernández, Alberto</creatorcontrib><title>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</title><title>Electronics (Basel)</title><description>Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.</description><subject>Allocations</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Clustering (Computers)</subject><subject>Connectivity</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Graph representations</subject><subject>Internet of Things</subject><subject>Interoperability</subject><subject>Knowledge representation</subject><subject>Load balancing (Computers)</subject><subject>Methods</subject><subject>Nodes</subject><subject>Ontology</subject><subject>Resource allocation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>Software</subject><subject>Software services</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUclOwzAQtRBIVNAv4GKJc4qXpEm4RVELSEU9UM6RY09SF8cudlrE3-OqHDgwM9IserPoDUJ3lMw4L8kDGJCjd1bLQDnhJM3zCzRhJC-TkpXs8k98jaYh7EiUkvKCkwkyazs643othcGvToHRtsfCKlybQxjBn9INyK3VnwcIuHMev4E_agm4MsZJMWpncbRxC3ihenjEFa7dsPewBRv0EfDSiwG-nP-4RVedMAGmv_4GvS8Xm_o5Wa2fXupqlUhO6ZhIkUuai7SVXcsLJYhiLW2LLstFR8o5Z1LBHICxVBVckkgCVSIVoiAskzwDfoPuz3P33p2uHpudO3gbVzaRhMhZlmZFRM3OqF4YaLTt3OiFjKpg0NJZ6HSsV3nBSFGm-Tw28HOD9C4ED12z93oQ_ruhpDm9ovnnFfwHOkaAuw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Karanik, Marcelo</creator><creator>Bernabé-Sánchez, Iván</creator><creator>Fernández, Alberto</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8848-3681</orcidid><orcidid>https://orcid.org/0000-0002-9229-3466</orcidid><orcidid>https://orcid.org/0000-0002-8962-6856</orcidid></search><sort><creationdate>20240201</creationdate><title>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</title><author>Karanik, Marcelo ; Bernabé-Sánchez, Iván ; Fernández, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ca7c17a4bcfb38da0d2b1b8f57af09632cde6ee224d83c03391da4aa8025c35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Allocations</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Clustering (Computers)</topic><topic>Connectivity</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Graph representations</topic><topic>Internet of Things</topic><topic>Interoperability</topic><topic>Knowledge representation</topic><topic>Load balancing (Computers)</topic><topic>Methods</topic><topic>Nodes</topic><topic>Ontology</topic><topic>Resource allocation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>Software</topic><topic>Software services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karanik, Marcelo</creatorcontrib><creatorcontrib>Bernabé-Sánchez, Iván</creatorcontrib><creatorcontrib>Fernández, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karanik, Marcelo</au><au>Bernabé-Sánchez, Iván</au><au>Fernández, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>3</issue><spage>477</spage><pages>477-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Nowadays, we are in a world of large amounts of heterogeneous devices with varying computational resources, ranging from small devices to large supercomputers, located on the cloud, edge or other abstraction layers in between. At the same time, software tasks need to be performed. They have specific computational or other types of requirements and must also be executed at a particular physical location. Moreover, both services and devices may change dynamically. In this context, methods are needed to effectively schedule efficient allocations of services to computational resources. In this article, we present a framework to address this problem. Our proposal first uses knowledge graphs for describing software requirements and the availability of resources for services and computing nodes, respectively. To this end, we proposed an ontology that extends our previous work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to computational nodes. We carried out simulations to evaluate four different clustering strategies. The results showed different performances in terms of the number of allocated services and node overload.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13030477</doi><orcidid>https://orcid.org/0000-0001-8848-3681</orcidid><orcidid>https://orcid.org/0000-0002-9229-3466</orcidid><orcidid>https://orcid.org/0000-0002-8962-6856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-02, Vol.13 (3), p.477 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2923905458 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Allocations Cloud computing Clustering Clustering (Computers) Connectivity Edge computing Energy consumption Graph representations Internet of Things Interoperability Knowledge representation Load balancing (Computers) Methods Nodes Ontology Resource allocation Semantics Sensors Smart cities Software Software services |
title | Ontological Modeling and Clustering Techniques for Service Allocation on the Edge: A Comprehensive Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ontological%20Modeling%20and%20Clustering%20Techniques%20for%20Service%20Allocation%20on%20the%20Edge:%20A%20Comprehensive%20Framework&rft.jtitle=Electronics%20(Basel)&rft.au=Karanik,%20Marcelo&rft.date=2024-02-01&rft.volume=13&rft.issue=3&rft.spage=477&rft.pages=477-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13030477&rft_dat=%3Cgale_proqu%3EA782089476%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923905458&rft_id=info:pmid/&rft_galeid=A782089476&rfr_iscdi=true |