Surrogate modelling of a detailed farm‐level model using deep learning
Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural economics 2024-02, Vol.75 (1), p.235-260 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 1 |
container_start_page | 235 |
container_title | Journal of agricultural economics |
container_volume | 75 |
creator | Shang, Linmei Wang, Jifeng Schäfer, David Heckelei, Thomas Gall, Juergen Appel, Franziska Storm, Hugo |
description | Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory. |
doi_str_mv | 10.1111/1477-9552.12543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923760922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923760922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqUwMyFZYm7re-KxqqAFVWIAJDbLSewqVRoXOwF14xF4Rp4Eh3Cd8HLso-_81vkAOMVojOOZYJYkI8k5GWPCGd0Dg-_O_q_7ITgKYY0QwZiTAVjctt67lW4M3LjCVFVZr6CzUMPCNLqsTAGt9pu3l9fKPJmqh2AbOqwwZgsro30dX8fgwOoqmJPPOgT3lxd3s8VoeTO_mk2Xo5wJSUeZJlTLjGRaspTwXKfWYEQya3NOE4MyypHAiBU5z0SeWCkEk0igDDPJSWHpEJz3uVvvHlsTGrV2ra_jl4pIQhOBJCGRmvRU7l0I3li19eVG-53CSHW6VCdEdULUh644AfsJk7u6DD98KhFLUUIeIiJ65Dl62f2XqK6n84uv7LM_2V0JjfOKpCQuR98BkeaAyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923760922</pqid></control><display><type>article</type><title>Surrogate modelling of a detailed farm‐level model using deep learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shang, Linmei ; Wang, Jifeng ; Schäfer, David ; Heckelei, Thomas ; Gall, Juergen ; Appel, Franziska ; Storm, Hugo</creator><creatorcontrib>Shang, Linmei ; Wang, Jifeng ; Schäfer, David ; Heckelei, Thomas ; Gall, Juergen ; Appel, Franziska ; Storm, Hugo</creatorcontrib><description>Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.</description><identifier>ISSN: 1477-9552</identifier><identifier>ISSN: 0021-857X</identifier><identifier>EISSN: 1477-9552</identifier><identifier>DOI: 10.1111/1477-9552.12543</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley</publisher><subject>agent-based model ; Agent-based models ; Deep learning ; Environmental indicators ; Environmental performance ; farm modelling ; Farms ; Inference ; Learning ; Long short-term memory ; Multilayer perceptrons ; Neural networks ; Regional development ; Short term memory ; surrogate model ; Technological change ; Transformation ; upscaling</subject><ispartof>Journal of agricultural economics, 2024-02, Vol.75 (1), p.235-260</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Agricultural Economics Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</citedby><cites>FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</cites><orcidid>0000-0002-6049-4511 ; 0000-0002-5044-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1477-9552.12543$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1477-9552.12543$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shang, Linmei</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Schäfer, David</creatorcontrib><creatorcontrib>Heckelei, Thomas</creatorcontrib><creatorcontrib>Gall, Juergen</creatorcontrib><creatorcontrib>Appel, Franziska</creatorcontrib><creatorcontrib>Storm, Hugo</creatorcontrib><title>Surrogate modelling of a detailed farm‐level model using deep learning</title><title>Journal of agricultural economics</title><description>Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.</description><subject>agent-based model</subject><subject>Agent-based models</subject><subject>Deep learning</subject><subject>Environmental indicators</subject><subject>Environmental performance</subject><subject>farm modelling</subject><subject>Farms</subject><subject>Inference</subject><subject>Learning</subject><subject>Long short-term memory</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Regional development</subject><subject>Short term memory</subject><subject>surrogate model</subject><subject>Technological change</subject><subject>Transformation</subject><subject>upscaling</subject><issn>1477-9552</issn><issn>0021-857X</issn><issn>1477-9552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhi0EEqUwMyFZYm7re-KxqqAFVWIAJDbLSewqVRoXOwF14xF4Rp4Eh3Cd8HLso-_81vkAOMVojOOZYJYkI8k5GWPCGd0Dg-_O_q_7ITgKYY0QwZiTAVjctt67lW4M3LjCVFVZr6CzUMPCNLqsTAGt9pu3l9fKPJmqh2AbOqwwZgsro30dX8fgwOoqmJPPOgT3lxd3s8VoeTO_mk2Xo5wJSUeZJlTLjGRaspTwXKfWYEQya3NOE4MyypHAiBU5z0SeWCkEk0igDDPJSWHpEJz3uVvvHlsTGrV2ra_jl4pIQhOBJCGRmvRU7l0I3li19eVG-53CSHW6VCdEdULUh644AfsJk7u6DD98KhFLUUIeIiJ65Dl62f2XqK6n84uv7LM_2V0JjfOKpCQuR98BkeaAyw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Shang, Linmei</creator><creator>Wang, Jifeng</creator><creator>Schäfer, David</creator><creator>Heckelei, Thomas</creator><creator>Gall, Juergen</creator><creator>Appel, Franziska</creator><creator>Storm, Hugo</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>OT2</scope><scope>24P</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6049-4511</orcidid><orcidid>https://orcid.org/0000-0002-5044-3219</orcidid></search><sort><creationdate>202402</creationdate><title>Surrogate modelling of a detailed farm‐level model using deep learning</title><author>Shang, Linmei ; Wang, Jifeng ; Schäfer, David ; Heckelei, Thomas ; Gall, Juergen ; Appel, Franziska ; Storm, Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agent-based model</topic><topic>Agent-based models</topic><topic>Deep learning</topic><topic>Environmental indicators</topic><topic>Environmental performance</topic><topic>farm modelling</topic><topic>Farms</topic><topic>Inference</topic><topic>Learning</topic><topic>Long short-term memory</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Regional development</topic><topic>Short term memory</topic><topic>surrogate model</topic><topic>Technological change</topic><topic>Transformation</topic><topic>upscaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Linmei</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Schäfer, David</creatorcontrib><creatorcontrib>Heckelei, Thomas</creatorcontrib><creatorcontrib>Gall, Juergen</creatorcontrib><creatorcontrib>Appel, Franziska</creatorcontrib><creatorcontrib>Storm, Hugo</creatorcontrib><collection>EconStor</collection><collection>Wiley Online Library Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Linmei</au><au>Wang, Jifeng</au><au>Schäfer, David</au><au>Heckelei, Thomas</au><au>Gall, Juergen</au><au>Appel, Franziska</au><au>Storm, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surrogate modelling of a detailed farm‐level model using deep learning</atitle><jtitle>Journal of agricultural economics</jtitle><date>2024-02</date><risdate>2024</risdate><volume>75</volume><issue>1</issue><spage>235</spage><epage>260</epage><pages>235-260</pages><issn>1477-9552</issn><issn>0021-857X</issn><eissn>1477-9552</eissn><abstract>Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.</abstract><cop>Hoboken, NJ</cop><pub>Wiley</pub><doi>10.1111/1477-9552.12543</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6049-4511</orcidid><orcidid>https://orcid.org/0000-0002-5044-3219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9552 |
ispartof | Journal of agricultural economics, 2024-02, Vol.75 (1), p.235-260 |
issn | 1477-9552 0021-857X 1477-9552 |
language | eng |
recordid | cdi_proquest_journals_2923760922 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | agent-based model Agent-based models Deep learning Environmental indicators Environmental performance farm modelling Farms Inference Learning Long short-term memory Multilayer perceptrons Neural networks Regional development Short term memory surrogate model Technological change Transformation upscaling |
title | Surrogate modelling of a detailed farm‐level model using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surrogate%20modelling%20of%20a%20detailed%20farm%E2%80%90level%20model%20using%20deep%20learning&rft.jtitle=Journal%20of%20agricultural%20economics&rft.au=Shang,%20Linmei&rft.date=2024-02&rft.volume=75&rft.issue=1&rft.spage=235&rft.epage=260&rft.pages=235-260&rft.issn=1477-9552&rft.eissn=1477-9552&rft_id=info:doi/10.1111/1477-9552.12543&rft_dat=%3Cproquest_cross%3E2923760922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923760922&rft_id=info:pmid/&rfr_iscdi=true |