Surrogate modelling of a detailed farm‐level model using deep learning

Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural economics 2024-02, Vol.75 (1), p.235-260
Hauptverfasser: Shang, Linmei, Wang, Jifeng, Schäfer, David, Heckelei, Thomas, Gall, Juergen, Appel, Franziska, Storm, Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 1
container_start_page 235
container_title Journal of agricultural economics
container_volume 75
creator Shang, Linmei
Wang, Jifeng
Schäfer, David
Heckelei, Thomas
Gall, Juergen
Appel, Franziska
Storm, Hugo
description Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.
doi_str_mv 10.1111/1477-9552.12543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923760922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923760922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqUwMyFZYm7re-KxqqAFVWIAJDbLSewqVRoXOwF14xF4Rp4Eh3Cd8HLso-_81vkAOMVojOOZYJYkI8k5GWPCGd0Dg-_O_q_7ITgKYY0QwZiTAVjctt67lW4M3LjCVFVZr6CzUMPCNLqsTAGt9pu3l9fKPJmqh2AbOqwwZgsro30dX8fgwOoqmJPPOgT3lxd3s8VoeTO_mk2Xo5wJSUeZJlTLjGRaspTwXKfWYEQya3NOE4MyypHAiBU5z0SeWCkEk0igDDPJSWHpEJz3uVvvHlsTGrV2ra_jl4pIQhOBJCGRmvRU7l0I3li19eVG-53CSHW6VCdEdULUh644AfsJk7u6DD98KhFLUUIeIiJ65Dl62f2XqK6n84uv7LM_2V0JjfOKpCQuR98BkeaAyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923760922</pqid></control><display><type>article</type><title>Surrogate modelling of a detailed farm‐level model using deep learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shang, Linmei ; Wang, Jifeng ; Schäfer, David ; Heckelei, Thomas ; Gall, Juergen ; Appel, Franziska ; Storm, Hugo</creator><creatorcontrib>Shang, Linmei ; Wang, Jifeng ; Schäfer, David ; Heckelei, Thomas ; Gall, Juergen ; Appel, Franziska ; Storm, Hugo</creatorcontrib><description>Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.</description><identifier>ISSN: 1477-9552</identifier><identifier>ISSN: 0021-857X</identifier><identifier>EISSN: 1477-9552</identifier><identifier>DOI: 10.1111/1477-9552.12543</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley</publisher><subject>agent-based model ; Agent-based models ; Deep learning ; Environmental indicators ; Environmental performance ; farm modelling ; Farms ; Inference ; Learning ; Long short-term memory ; Multilayer perceptrons ; Neural networks ; Regional development ; Short term memory ; surrogate model ; Technological change ; Transformation ; upscaling</subject><ispartof>Journal of agricultural economics, 2024-02, Vol.75 (1), p.235-260</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Agricultural Economics Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</citedby><cites>FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</cites><orcidid>0000-0002-6049-4511 ; 0000-0002-5044-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1477-9552.12543$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1477-9552.12543$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shang, Linmei</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Schäfer, David</creatorcontrib><creatorcontrib>Heckelei, Thomas</creatorcontrib><creatorcontrib>Gall, Juergen</creatorcontrib><creatorcontrib>Appel, Franziska</creatorcontrib><creatorcontrib>Storm, Hugo</creatorcontrib><title>Surrogate modelling of a detailed farm‐level model using deep learning</title><title>Journal of agricultural economics</title><description>Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.</description><subject>agent-based model</subject><subject>Agent-based models</subject><subject>Deep learning</subject><subject>Environmental indicators</subject><subject>Environmental performance</subject><subject>farm modelling</subject><subject>Farms</subject><subject>Inference</subject><subject>Learning</subject><subject>Long short-term memory</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Regional development</subject><subject>Short term memory</subject><subject>surrogate model</subject><subject>Technological change</subject><subject>Transformation</subject><subject>upscaling</subject><issn>1477-9552</issn><issn>0021-857X</issn><issn>1477-9552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhi0EEqUwMyFZYm7re-KxqqAFVWIAJDbLSewqVRoXOwF14xF4Rp4Eh3Cd8HLso-_81vkAOMVojOOZYJYkI8k5GWPCGd0Dg-_O_q_7ITgKYY0QwZiTAVjctt67lW4M3LjCVFVZr6CzUMPCNLqsTAGt9pu3l9fKPJmqh2AbOqwwZgsro30dX8fgwOoqmJPPOgT3lxd3s8VoeTO_mk2Xo5wJSUeZJlTLjGRaspTwXKfWYEQya3NOE4MyypHAiBU5z0SeWCkEk0igDDPJSWHpEJz3uVvvHlsTGrV2ra_jl4pIQhOBJCGRmvRU7l0I3li19eVG-53CSHW6VCdEdULUh644AfsJk7u6DD98KhFLUUIeIiJ65Dl62f2XqK6n84uv7LM_2V0JjfOKpCQuR98BkeaAyw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Shang, Linmei</creator><creator>Wang, Jifeng</creator><creator>Schäfer, David</creator><creator>Heckelei, Thomas</creator><creator>Gall, Juergen</creator><creator>Appel, Franziska</creator><creator>Storm, Hugo</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>OT2</scope><scope>24P</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6049-4511</orcidid><orcidid>https://orcid.org/0000-0002-5044-3219</orcidid></search><sort><creationdate>202402</creationdate><title>Surrogate modelling of a detailed farm‐level model using deep learning</title><author>Shang, Linmei ; Wang, Jifeng ; Schäfer, David ; Heckelei, Thomas ; Gall, Juergen ; Appel, Franziska ; Storm, Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4693-ba23a9b2ba94825ca8fe102bffc537e0b3506104dc5b6c7f96649060b14952df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agent-based model</topic><topic>Agent-based models</topic><topic>Deep learning</topic><topic>Environmental indicators</topic><topic>Environmental performance</topic><topic>farm modelling</topic><topic>Farms</topic><topic>Inference</topic><topic>Learning</topic><topic>Long short-term memory</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Regional development</topic><topic>Short term memory</topic><topic>surrogate model</topic><topic>Technological change</topic><topic>Transformation</topic><topic>upscaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Linmei</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Schäfer, David</creatorcontrib><creatorcontrib>Heckelei, Thomas</creatorcontrib><creatorcontrib>Gall, Juergen</creatorcontrib><creatorcontrib>Appel, Franziska</creatorcontrib><creatorcontrib>Storm, Hugo</creatorcontrib><collection>EconStor</collection><collection>Wiley Online Library Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Linmei</au><au>Wang, Jifeng</au><au>Schäfer, David</au><au>Heckelei, Thomas</au><au>Gall, Juergen</au><au>Appel, Franziska</au><au>Storm, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surrogate modelling of a detailed farm‐level model using deep learning</atitle><jtitle>Journal of agricultural economics</jtitle><date>2024-02</date><risdate>2024</risdate><volume>75</volume><issue>1</issue><spage>235</spage><epage>260</epage><pages>235-260</pages><issn>1477-9552</issn><issn>0021-857X</issn><eissn>1477-9552</eissn><abstract>Technological change co‐determines agri‐environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm‐level models that are rich in technology details and environmental indicators, integrated with agent‐based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade‐offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi‐directional Long Short Term Memory.</abstract><cop>Hoboken, NJ</cop><pub>Wiley</pub><doi>10.1111/1477-9552.12543</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6049-4511</orcidid><orcidid>https://orcid.org/0000-0002-5044-3219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-9552
ispartof Journal of agricultural economics, 2024-02, Vol.75 (1), p.235-260
issn 1477-9552
0021-857X
1477-9552
language eng
recordid cdi_proquest_journals_2923760922
source Wiley Online Library Journals Frontfile Complete
subjects agent-based model
Agent-based models
Deep learning
Environmental indicators
Environmental performance
farm modelling
Farms
Inference
Learning
Long short-term memory
Multilayer perceptrons
Neural networks
Regional development
Short term memory
surrogate model
Technological change
Transformation
upscaling
title Surrogate modelling of a detailed farm‐level model using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surrogate%20modelling%20of%20a%20detailed%20farm%E2%80%90level%20model%20using%20deep%20learning&rft.jtitle=Journal%20of%20agricultural%20economics&rft.au=Shang,%20Linmei&rft.date=2024-02&rft.volume=75&rft.issue=1&rft.spage=235&rft.epage=260&rft.pages=235-260&rft.issn=1477-9552&rft.eissn=1477-9552&rft_id=info:doi/10.1111/1477-9552.12543&rft_dat=%3Cproquest_cross%3E2923760922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923760922&rft_id=info:pmid/&rfr_iscdi=true