Choosing a Classical Planner with Graph Neural Networks

Online planner selection is the task of choosing a solver out of a predefined set for a given planning problem. As planning is computationally hard, the performance of solvers varies greatly on planning problems. Thus, the ability to predict their performance on a given problem is of great importanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Vatter, Jana, Mayer, Ruben, Jacobsen, Hans-Arno, Samulowitz, Horst, Katz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vatter, Jana
Mayer, Ruben
Jacobsen, Hans-Arno
Samulowitz, Horst
Katz, Michael
description Online planner selection is the task of choosing a solver out of a predefined set for a given planning problem. As planning is computationally hard, the performance of solvers varies greatly on planning problems. Thus, the ability to predict their performance on a given problem is of great importance. While a variety of learning methods have been employed, for classical cost-optimal planning the prevailing approach uses Graph Neural Networks (GNNs). In this work, we continue the line of work on using GNNs for online planner selection. We perform a thorough investigation of the impact of the chosen GNN model, graph representation and node features, as well as prediction task. Going further, we propose using the graph representation obtained by a GNN as an input to the Extreme Gradient Boosting (XGBoost) model, resulting in a more resource-efficient yet accurate approach. We show the effectiveness of a variety of GNN-based online planner selection methods, opening up new exciting avenues for research on online planner selection.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2923739957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923739957</sourcerecordid><originalsourceid>FETCH-proquest_journals_29237399573</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_HGGDMHf6bi4F6CRJMakpqb0te3gw_gdIbvLEgFnO-a4x5gRWrEnjEGBwlC8IpI7VJCH1_UUB0Mon-YQG_BxGgznXxx9JLN4GhrxzxLa8uU8hs3ZPk0AW3965psz6e7vjZDTp_RYun6NOY4UwcKuORKCcn_u77bljV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923739957</pqid></control><display><type>article</type><title>Choosing a Classical Planner with Graph Neural Networks</title><source>Free E- Journals</source><creator>Vatter, Jana ; Mayer, Ruben ; Jacobsen, Hans-Arno ; Samulowitz, Horst ; Katz, Michael</creator><creatorcontrib>Vatter, Jana ; Mayer, Ruben ; Jacobsen, Hans-Arno ; Samulowitz, Horst ; Katz, Michael</creatorcontrib><description>Online planner selection is the task of choosing a solver out of a predefined set for a given planning problem. As planning is computationally hard, the performance of solvers varies greatly on planning problems. Thus, the ability to predict their performance on a given problem is of great importance. While a variety of learning methods have been employed, for classical cost-optimal planning the prevailing approach uses Graph Neural Networks (GNNs). In this work, we continue the line of work on using GNNs for online planner selection. We perform a thorough investigation of the impact of the chosen GNN model, graph representation and node features, as well as prediction task. Going further, we propose using the graph representation obtained by a GNN as an input to the Extreme Gradient Boosting (XGBoost) model, resulting in a more resource-efficient yet accurate approach. We show the effectiveness of a variety of GNN-based online planner selection methods, opening up new exciting avenues for research on online planner selection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph neural networks ; Graph representations ; Graphical representations ; Neural networks ; Planning ; Solvers</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vatter, Jana</creatorcontrib><creatorcontrib>Mayer, Ruben</creatorcontrib><creatorcontrib>Jacobsen, Hans-Arno</creatorcontrib><creatorcontrib>Samulowitz, Horst</creatorcontrib><creatorcontrib>Katz, Michael</creatorcontrib><title>Choosing a Classical Planner with Graph Neural Networks</title><title>arXiv.org</title><description>Online planner selection is the task of choosing a solver out of a predefined set for a given planning problem. As planning is computationally hard, the performance of solvers varies greatly on planning problems. Thus, the ability to predict their performance on a given problem is of great importance. While a variety of learning methods have been employed, for classical cost-optimal planning the prevailing approach uses Graph Neural Networks (GNNs). In this work, we continue the line of work on using GNNs for online planner selection. We perform a thorough investigation of the impact of the chosen GNN model, graph representation and node features, as well as prediction task. Going further, we propose using the graph representation obtained by a GNN as an input to the Extreme Gradient Boosting (XGBoost) model, resulting in a more resource-efficient yet accurate approach. We show the effectiveness of a variety of GNN-based online planner selection methods, opening up new exciting avenues for research on online planner selection.</description><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Neural networks</subject><subject>Planning</subject><subject>Solvers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_HGGDMHf6bi4F6CRJMakpqb0te3gw_gdIbvLEgFnO-a4x5gRWrEnjEGBwlC8IpI7VJCH1_UUB0Mon-YQG_BxGgznXxx9JLN4GhrxzxLa8uU8hs3ZPk0AW3965psz6e7vjZDTp_RYun6NOY4UwcKuORKCcn_u77bljV4</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Vatter, Jana</creator><creator>Mayer, Ruben</creator><creator>Jacobsen, Hans-Arno</creator><creator>Samulowitz, Horst</creator><creator>Katz, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240125</creationdate><title>Choosing a Classical Planner with Graph Neural Networks</title><author>Vatter, Jana ; Mayer, Ruben ; Jacobsen, Hans-Arno ; Samulowitz, Horst ; Katz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29237399573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Neural networks</topic><topic>Planning</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Vatter, Jana</creatorcontrib><creatorcontrib>Mayer, Ruben</creatorcontrib><creatorcontrib>Jacobsen, Hans-Arno</creatorcontrib><creatorcontrib>Samulowitz, Horst</creatorcontrib><creatorcontrib>Katz, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatter, Jana</au><au>Mayer, Ruben</au><au>Jacobsen, Hans-Arno</au><au>Samulowitz, Horst</au><au>Katz, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Choosing a Classical Planner with Graph Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-01-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Online planner selection is the task of choosing a solver out of a predefined set for a given planning problem. As planning is computationally hard, the performance of solvers varies greatly on planning problems. Thus, the ability to predict their performance on a given problem is of great importance. While a variety of learning methods have been employed, for classical cost-optimal planning the prevailing approach uses Graph Neural Networks (GNNs). In this work, we continue the line of work on using GNNs for online planner selection. We perform a thorough investigation of the impact of the chosen GNN model, graph representation and node features, as well as prediction task. Going further, we propose using the graph representation obtained by a GNN as an input to the Extreme Gradient Boosting (XGBoost) model, resulting in a more resource-efficient yet accurate approach. We show the effectiveness of a variety of GNN-based online planner selection methods, opening up new exciting avenues for research on online planner selection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2923739957
source Free E- Journals
subjects Graph neural networks
Graph representations
Graphical representations
Neural networks
Planning
Solvers
title Choosing a Classical Planner with Graph Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Choosing%20a%20Classical%20Planner%20with%20Graph%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Vatter,%20Jana&rft.date=2024-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2923739957%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923739957&rft_id=info:pmid/&rfr_iscdi=true