Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems

In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Bajpai, Harshit, Mittal, Gaurav, Giri, Ankik Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bajpai, Harshit
Mittal, Gaurav
Giri, Ankik Kumar
description In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2923735820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923735820</sourcerecordid><originalsourceid>FETCH-proquest_journals_29237358203</originalsourceid><addsrcrecordid>eNqNikEPwTAYQBuJhOA_fIlzk2rNuDJCgkjm4iTd9rHK9KPt5u_bwQ9wee_wXof1pVITPp9K2WMj7x9CCDmLZRSpPrukgfJS-2BySHTQPHGmQQtLqitz17aAfYsPZujggKGkAm7kIKWqMfYOR7LcP4lCCTvboPMIJ0dZhU8_ZN2brjyOfh6w8WZ9Xm35y9G7Rh-uD6qdbdNVLqSKVTSXQv13fQHT30I5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923735820</pqid></control><display><type>article</type><title>Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems</title><source>Freely Accessible Journals</source><creator>Bajpai, Harshit ; Mittal, Gaurav ; Giri, Ankik Kumar</creator><creatorcontrib>Bajpai, Harshit ; Mittal, Gaurav ; Giri, Ankik Kumar</creatorcontrib><description>In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Hilbert space ; Inverse problems ; Linear operators ; Nonlinear systems</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bajpai, Harshit</creatorcontrib><creatorcontrib>Mittal, Gaurav</creatorcontrib><creatorcontrib>Giri, Ankik Kumar</creatorcontrib><title>Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems</title><title>arXiv.org</title><description>In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.</description><subject>Convergence</subject><subject>Hilbert space</subject><subject>Inverse problems</subject><subject>Linear operators</subject><subject>Nonlinear systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEPwTAYQBuJhOA_fIlzk2rNuDJCgkjm4iTd9rHK9KPt5u_bwQ9wee_wXof1pVITPp9K2WMj7x9CCDmLZRSpPrukgfJS-2BySHTQPHGmQQtLqitz17aAfYsPZujggKGkAm7kIKWqMfYOR7LcP4lCCTvboPMIJ0dZhU8_ZN2brjyOfh6w8WZ9Xm35y9G7Rh-uD6qdbdNVLqSKVTSXQv13fQHT30I5</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Bajpai, Harshit</creator><creator>Mittal, Gaurav</creator><creator>Giri, Ankik Kumar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240207</creationdate><title>Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems</title><author>Bajpai, Harshit ; Mittal, Gaurav ; Giri, Ankik Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29237358203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Hilbert space</topic><topic>Inverse problems</topic><topic>Linear operators</topic><topic>Nonlinear systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bajpai, Harshit</creatorcontrib><creatorcontrib>Mittal, Gaurav</creatorcontrib><creatorcontrib>Giri, Ankik Kumar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajpai, Harshit</au><au>Mittal, Gaurav</au><au>Giri, Ankik Kumar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems</atitle><jtitle>arXiv.org</jtitle><date>2024-02-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2923735820
source Freely Accessible Journals
subjects Convergence
Hilbert space
Inverse problems
Linear operators
Nonlinear systems
title Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20Data-Driven%20Bouligand%20Landweber%20Method%20for%20Solving%20Non-smooth%20Inverse%20Problems&rft.jtitle=arXiv.org&rft.au=Bajpai,%20Harshit&rft.date=2024-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2923735820%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923735820&rft_id=info:pmid/&rfr_iscdi=true