Intrinsic Activity of Metalized Porphyrin‐based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction

Electrocatalytic nitrate reduction (NO3RR) to ammonia is a promising alternative to the traditional Haber–Bosch process for the removal of widespread nitrate pollutants. Understanding the structure–activity correlations of the NO3RR is essential for developing efficient catalysts. Herein, metalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-02, Vol.14 (6), p.n/a
Hauptverfasser: Hu, Hongyin, Miao, Runyang, Yang, Fulin, Duan, Fang, Zhu, Han, Hu, Yiming, Du, Mingliang, Lu, Shuanglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced energy materials
container_volume 14
creator Hu, Hongyin
Miao, Runyang
Yang, Fulin
Duan, Fang
Zhu, Han
Hu, Yiming
Du, Mingliang
Lu, Shuanglong
description Electrocatalytic nitrate reduction (NO3RR) to ammonia is a promising alternative to the traditional Haber–Bosch process for the removal of widespread nitrate pollutants. Understanding the structure–activity correlations of the NO3RR is essential for developing efficient catalysts. Herein, metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal the reaction pathway and intrinsic structure–performance relationship of the NO3RR. The experimental results show that Fe porphyrin‐based COFs have the highest activity and ammonia selectivity (FENH3 = 85.4%, NH3 yield rate = 1883.6 µmol h−1 mg−1COF) among COFs with different investigated metal centers. Moreover, the higher electron density at the Fe center as regulated by the linking units significantly decreased the selective reduction ability from nitrate to ammonia of the COFs. Theoretical calculations confirmed that the reaction pathway and *NO to *NHO are potential‐dependent steps. More importantly, the adsorbed energy of NO on the metal centers (G*NO) is proposed as a highly matched thermodynamic descriptor for evaluating catalytic performance and may be extended to more NO3RR catalysts with well‐defined structures. This work illustrates the intrinsic structure–activity relationship of metalized COFs for the NO3RR, which may provide useful guidance for designing efficient electrocatalysts. Metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal their reaction pathway and intrinsic structure–performance relationship toward nitrate reduction reaction (NO3RR). The adsorbed energy of NO on the metal centers is proposed as a matched thermodynamic descriptor for evaluating catalytic performance and can be extended to more NO3RR catalysts with well‐defined structures.
doi_str_mv 10.1002/aenm.202302608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923716535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923716535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-3dd91ad3a82f30013949bcdb35795a8984c6613fa02f6b39b1d7fd2db9567bd53</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiQTZum7iGuzPTGe6JASUhB9jdN10pq0ODlNsC2Rc-Qg-o09iCQaX3s29ufd85yYHgGuMBhghcit1sx4QRCgiDOVnoIMZTvosT9D5aabkEvS8X6FYCceI0g4I0ya4qvFVCYdlqHZVaKE1cK6DrKsPreCDdZvXNkq-P78K6eNmZHey1k2AS_cimwhOnFzrvXVvHhrr4LjWZXC2lNGiDfG-qIKTQcNHrbbxh22uwIWRtde9394Fz5Px0-i-P1veTUfDWb-kOMv7VCmOpaIyJ4YihClPeFGqgqYZT2XO86RkDFMjETGsoLzAKjOKqIKnLCtUSrvg5ui7cfZ9q30QK7t1TXwpCCc0wyylB9XgqCqd9d5pIzauWkvXCozEIVxxCFecwo0APwL7qtbtP2oxHC_mf-wPoWmApg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923716535</pqid></control><display><type>article</type><title>Intrinsic Activity of Metalized Porphyrin‐based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction</title><source>Wiley Journals</source><creator>Hu, Hongyin ; Miao, Runyang ; Yang, Fulin ; Duan, Fang ; Zhu, Han ; Hu, Yiming ; Du, Mingliang ; Lu, Shuanglong</creator><creatorcontrib>Hu, Hongyin ; Miao, Runyang ; Yang, Fulin ; Duan, Fang ; Zhu, Han ; Hu, Yiming ; Du, Mingliang ; Lu, Shuanglong</creatorcontrib><description>Electrocatalytic nitrate reduction (NO3RR) to ammonia is a promising alternative to the traditional Haber–Bosch process for the removal of widespread nitrate pollutants. Understanding the structure–activity correlations of the NO3RR is essential for developing efficient catalysts. Herein, metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal the reaction pathway and intrinsic structure–performance relationship of the NO3RR. The experimental results show that Fe porphyrin‐based COFs have the highest activity and ammonia selectivity (FENH3 = 85.4%, NH3 yield rate = 1883.6 µmol h−1 mg−1COF) among COFs with different investigated metal centers. Moreover, the higher electron density at the Fe center as regulated by the linking units significantly decreased the selective reduction ability from nitrate to ammonia of the COFs. Theoretical calculations confirmed that the reaction pathway and *NO to *NHO are potential‐dependent steps. More importantly, the adsorbed energy of NO on the metal centers (G*NO) is proposed as a highly matched thermodynamic descriptor for evaluating catalytic performance and may be extended to more NO3RR catalysts with well‐defined structures. This work illustrates the intrinsic structure–activity relationship of metalized COFs for the NO3RR, which may provide useful guidance for designing efficient electrocatalysts. Metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal their reaction pathway and intrinsic structure–performance relationship toward nitrate reduction reaction (NO3RR). The adsorbed energy of NO on the metal centers is proposed as a matched thermodynamic descriptor for evaluating catalytic performance and can be extended to more NO3RR catalysts with well‐defined structures.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302608</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Catalysts ; covalent organic frameworks ; electrocatalysis ; Electrocatalysts ; Electron density ; Haber Bosch process ; Iron ; metalized porphyrin ; nitrate reduction reactions ; Nitrates ; Performance evaluation ; Porphyrins</subject><ispartof>Advanced energy materials, 2024-02, Vol.14 (6), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-3dd91ad3a82f30013949bcdb35795a8984c6613fa02f6b39b1d7fd2db9567bd53</citedby><cites>FETCH-LOGICAL-c3178-3dd91ad3a82f30013949bcdb35795a8984c6613fa02f6b39b1d7fd2db9567bd53</cites><orcidid>0000-0002-8598-5456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202302608$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202302608$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hu, Hongyin</creatorcontrib><creatorcontrib>Miao, Runyang</creatorcontrib><creatorcontrib>Yang, Fulin</creatorcontrib><creatorcontrib>Duan, Fang</creatorcontrib><creatorcontrib>Zhu, Han</creatorcontrib><creatorcontrib>Hu, Yiming</creatorcontrib><creatorcontrib>Du, Mingliang</creatorcontrib><creatorcontrib>Lu, Shuanglong</creatorcontrib><title>Intrinsic Activity of Metalized Porphyrin‐based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction</title><title>Advanced energy materials</title><description>Electrocatalytic nitrate reduction (NO3RR) to ammonia is a promising alternative to the traditional Haber–Bosch process for the removal of widespread nitrate pollutants. Understanding the structure–activity correlations of the NO3RR is essential for developing efficient catalysts. Herein, metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal the reaction pathway and intrinsic structure–performance relationship of the NO3RR. The experimental results show that Fe porphyrin‐based COFs have the highest activity and ammonia selectivity (FENH3 = 85.4%, NH3 yield rate = 1883.6 µmol h−1 mg−1COF) among COFs with different investigated metal centers. Moreover, the higher electron density at the Fe center as regulated by the linking units significantly decreased the selective reduction ability from nitrate to ammonia of the COFs. Theoretical calculations confirmed that the reaction pathway and *NO to *NHO are potential‐dependent steps. More importantly, the adsorbed energy of NO on the metal centers (G*NO) is proposed as a highly matched thermodynamic descriptor for evaluating catalytic performance and may be extended to more NO3RR catalysts with well‐defined structures. This work illustrates the intrinsic structure–activity relationship of metalized COFs for the NO3RR, which may provide useful guidance for designing efficient electrocatalysts. Metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal their reaction pathway and intrinsic structure–performance relationship toward nitrate reduction reaction (NO3RR). The adsorbed energy of NO on the metal centers is proposed as a matched thermodynamic descriptor for evaluating catalytic performance and can be extended to more NO3RR catalysts with well‐defined structures.</description><subject>Ammonia</subject><subject>Catalysts</subject><subject>covalent organic frameworks</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electron density</subject><subject>Haber Bosch process</subject><subject>Iron</subject><subject>metalized porphyrin</subject><subject>nitrate reduction reactions</subject><subject>Nitrates</subject><subject>Performance evaluation</subject><subject>Porphyrins</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiQTZum7iGuzPTGe6JASUhB9jdN10pq0ODlNsC2Rc-Qg-o09iCQaX3s29ufd85yYHgGuMBhghcit1sx4QRCgiDOVnoIMZTvosT9D5aabkEvS8X6FYCceI0g4I0ya4qvFVCYdlqHZVaKE1cK6DrKsPreCDdZvXNkq-P78K6eNmZHey1k2AS_cimwhOnFzrvXVvHhrr4LjWZXC2lNGiDfG-qIKTQcNHrbbxh22uwIWRtde9394Fz5Px0-i-P1veTUfDWb-kOMv7VCmOpaIyJ4YihClPeFGqgqYZT2XO86RkDFMjETGsoLzAKjOKqIKnLCtUSrvg5ui7cfZ9q30QK7t1TXwpCCc0wyylB9XgqCqd9d5pIzauWkvXCozEIVxxCFecwo0APwL7qtbtP2oxHC_mf-wPoWmApg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hu, Hongyin</creator><creator>Miao, Runyang</creator><creator>Yang, Fulin</creator><creator>Duan, Fang</creator><creator>Zhu, Han</creator><creator>Hu, Yiming</creator><creator>Du, Mingliang</creator><creator>Lu, Shuanglong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8598-5456</orcidid></search><sort><creationdate>20240201</creationdate><title>Intrinsic Activity of Metalized Porphyrin‐based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction</title><author>Hu, Hongyin ; Miao, Runyang ; Yang, Fulin ; Duan, Fang ; Zhu, Han ; Hu, Yiming ; Du, Mingliang ; Lu, Shuanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-3dd91ad3a82f30013949bcdb35795a8984c6613fa02f6b39b1d7fd2db9567bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Catalysts</topic><topic>covalent organic frameworks</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electron density</topic><topic>Haber Bosch process</topic><topic>Iron</topic><topic>metalized porphyrin</topic><topic>nitrate reduction reactions</topic><topic>Nitrates</topic><topic>Performance evaluation</topic><topic>Porphyrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Hongyin</creatorcontrib><creatorcontrib>Miao, Runyang</creatorcontrib><creatorcontrib>Yang, Fulin</creatorcontrib><creatorcontrib>Duan, Fang</creatorcontrib><creatorcontrib>Zhu, Han</creatorcontrib><creatorcontrib>Hu, Yiming</creatorcontrib><creatorcontrib>Du, Mingliang</creatorcontrib><creatorcontrib>Lu, Shuanglong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Hongyin</au><au>Miao, Runyang</au><au>Yang, Fulin</au><au>Duan, Fang</au><au>Zhu, Han</au><au>Hu, Yiming</au><au>Du, Mingliang</au><au>Lu, Shuanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Activity of Metalized Porphyrin‐based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction</atitle><jtitle>Advanced energy materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Electrocatalytic nitrate reduction (NO3RR) to ammonia is a promising alternative to the traditional Haber–Bosch process for the removal of widespread nitrate pollutants. Understanding the structure–activity correlations of the NO3RR is essential for developing efficient catalysts. Herein, metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal the reaction pathway and intrinsic structure–performance relationship of the NO3RR. The experimental results show that Fe porphyrin‐based COFs have the highest activity and ammonia selectivity (FENH3 = 85.4%, NH3 yield rate = 1883.6 µmol h−1 mg−1COF) among COFs with different investigated metal centers. Moreover, the higher electron density at the Fe center as regulated by the linking units significantly decreased the selective reduction ability from nitrate to ammonia of the COFs. Theoretical calculations confirmed that the reaction pathway and *NO to *NHO are potential‐dependent steps. More importantly, the adsorbed energy of NO on the metal centers (G*NO) is proposed as a highly matched thermodynamic descriptor for evaluating catalytic performance and may be extended to more NO3RR catalysts with well‐defined structures. This work illustrates the intrinsic structure–activity relationship of metalized COFs for the NO3RR, which may provide useful guidance for designing efficient electrocatalysts. Metalized porphyrin‐based covalent organic frameworks (COFs) containing optional metal centers and linking units are used to reveal their reaction pathway and intrinsic structure–performance relationship toward nitrate reduction reaction (NO3RR). The adsorbed energy of NO on the metal centers is proposed as a matched thermodynamic descriptor for evaluating catalytic performance and can be extended to more NO3RR catalysts with well‐defined structures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302608</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8598-5456</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-02, Vol.14 (6), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2923716535
source Wiley Journals
subjects Ammonia
Catalysts
covalent organic frameworks
electrocatalysis
Electrocatalysts
Electron density
Haber Bosch process
Iron
metalized porphyrin
nitrate reduction reactions
Nitrates
Performance evaluation
Porphyrins
title Intrinsic Activity of Metalized Porphyrin‐based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Activity%20of%20Metalized%20Porphyrin%E2%80%90based%20Covalent%20Organic%20Frameworks%20for%20Electrocatalytic%20Nitrate%20Reduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Hu,%20Hongyin&rft.date=2024-02-01&rft.volume=14&rft.issue=6&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302608&rft_dat=%3Cproquest_cross%3E2923716535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923716535&rft_id=info:pmid/&rfr_iscdi=true