The Influence of Melting on Catalysis in Propane Oxidation

A model catalyst composed of crystalline potassium pentavanadate (K3V5O14) supported on silica was studied to elucidate the effect of phase transitions on the performance of potassium‐promoted vanadia catalysts in propane oxidation. Operando calorimetry shows a clear correlation between a drop in ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2024-02, Vol.16 (3), p.n/a
Hauptverfasser: Erdem, Ezgi, Tarasov, Andrey V., Kube, Pierre, Koch, Gregor, Plodinec, Milivoj, Lunkenbein, Thomas, Carey, Spencer, Wang, Yuanqing, Hävecker, Michael, Rosowski, Frank, Schlögl, Robert, Trunschke, Annette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title ChemCatChem
container_volume 16
creator Erdem, Ezgi
Tarasov, Andrey V.
Kube, Pierre
Koch, Gregor
Plodinec, Milivoj
Lunkenbein, Thomas
Carey, Spencer
Wang, Yuanqing
Hävecker, Michael
Rosowski, Frank
Schlögl, Robert
Trunschke, Annette
description A model catalyst composed of crystalline potassium pentavanadate (K3V5O14) supported on silica was studied to elucidate the effect of phase transitions on the performance of potassium‐promoted vanadia catalysts in propane oxidation. Operando calorimetry shows a clear correlation between a drop in activity and an increase in selectivity to propylene upon melting of the crystalline K3V5O14 phase under reaction conditions. The pentavanadate phase itself is not active in propane oxidation, neither in the solid nor in the molten state. The activity of the catalyst mainly originates from highly‐active, i. e., unselective VxOy surface species anchored to silica and formed during synthesis in addition to the supported pentavanadate phase. Melting of K3V5O14 leads to the coverage of these VxOy species preventing the overoxidation of propylene and leading to an increase in propylene selectivity. The change in catalyst properties is therefore due to a physical effect and not to a change in the chemical properties of the predominant crystalline phase. Liquefaction cools down the catalyst. Using operando differential scanning calorimetry, a clear correlation between the melting of a surface phase and the drastic change in the catalytic properties of an alkali‐modified catalyst in propane oxidation could be demonstrated. By covering highly active vanadium centers, the inactive melt can increase selectivity in oxidation catalysis.
doi_str_mv 10.1002/cctc.202301242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923518100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923518100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-e1d4f8853d5be33de505d6657022f7c68e0fd8d032b791558549ffe7ae98fe3c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPW_PR7CbeZPGjUKmHeg5pMtGUNanJFu2_d0tFj55mDs_zDvMidEnJhBLCrq3t7YQRxgllU3aERlTWTcWlUse_uySn6KyUNSG14o0YoZvlG-BZ9N0WogWcPH6Crg_xFaeIW9ObbldCwSHi55w2JgJefAVn-pDiOTrxpitw8TPH6OX-btk-VvPFw6y9nVeWU8YqoG7qpRTciRVw7kAQ4epaNIQx39haAvFOOsLZqlFUCCmmyntoDCjpgVs-RleH3E1OH1sovV6nbY7DSc0U44LK4f2Bmhwom1MpGbze5PBu8k5Tovf96H0_-refQVAH4TN0sPuH1m27bP_cb5b6aBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923518100</pqid></control><display><type>article</type><title>The Influence of Melting on Catalysis in Propane Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Erdem, Ezgi ; Tarasov, Andrey V. ; Kube, Pierre ; Koch, Gregor ; Plodinec, Milivoj ; Lunkenbein, Thomas ; Carey, Spencer ; Wang, Yuanqing ; Hävecker, Michael ; Rosowski, Frank ; Schlögl, Robert ; Trunschke, Annette</creator><creatorcontrib>Erdem, Ezgi ; Tarasov, Andrey V. ; Kube, Pierre ; Koch, Gregor ; Plodinec, Milivoj ; Lunkenbein, Thomas ; Carey, Spencer ; Wang, Yuanqing ; Hävecker, Michael ; Rosowski, Frank ; Schlögl, Robert ; Trunschke, Annette</creatorcontrib><description>A model catalyst composed of crystalline potassium pentavanadate (K3V5O14) supported on silica was studied to elucidate the effect of phase transitions on the performance of potassium‐promoted vanadia catalysts in propane oxidation. Operando calorimetry shows a clear correlation between a drop in activity and an increase in selectivity to propylene upon melting of the crystalline K3V5O14 phase under reaction conditions. The pentavanadate phase itself is not active in propane oxidation, neither in the solid nor in the molten state. The activity of the catalyst mainly originates from highly‐active, i. e., unselective VxOy surface species anchored to silica and formed during synthesis in addition to the supported pentavanadate phase. Melting of K3V5O14 leads to the coverage of these VxOy species preventing the overoxidation of propylene and leading to an increase in propylene selectivity. The change in catalyst properties is therefore due to a physical effect and not to a change in the chemical properties of the predominant crystalline phase. Liquefaction cools down the catalyst. Using operando differential scanning calorimetry, a clear correlation between the melting of a surface phase and the drastic change in the catalytic properties of an alkali‐modified catalyst in propane oxidation could be demonstrated. By covering highly active vanadium centers, the inactive melt can increase selectivity in oxidation catalysis.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202301242</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alkali ; Catalysis ; Catalysts ; Chemical properties ; Melting ; Oxidation ; Phase transitions ; Potassium ; Propane ; Propylene ; Silicon dioxide ; vanadium</subject><ispartof>ChemCatChem, 2024-02, Vol.16 (3), p.n/a</ispartof><rights>2023 The Authors. ChemCatChem published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-e1d4f8853d5be33de505d6657022f7c68e0fd8d032b791558549ffe7ae98fe3c3</cites><orcidid>0000-0003-2869-0181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202301242$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202301242$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Erdem, Ezgi</creatorcontrib><creatorcontrib>Tarasov, Andrey V.</creatorcontrib><creatorcontrib>Kube, Pierre</creatorcontrib><creatorcontrib>Koch, Gregor</creatorcontrib><creatorcontrib>Plodinec, Milivoj</creatorcontrib><creatorcontrib>Lunkenbein, Thomas</creatorcontrib><creatorcontrib>Carey, Spencer</creatorcontrib><creatorcontrib>Wang, Yuanqing</creatorcontrib><creatorcontrib>Hävecker, Michael</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Trunschke, Annette</creatorcontrib><title>The Influence of Melting on Catalysis in Propane Oxidation</title><title>ChemCatChem</title><description>A model catalyst composed of crystalline potassium pentavanadate (K3V5O14) supported on silica was studied to elucidate the effect of phase transitions on the performance of potassium‐promoted vanadia catalysts in propane oxidation. Operando calorimetry shows a clear correlation between a drop in activity and an increase in selectivity to propylene upon melting of the crystalline K3V5O14 phase under reaction conditions. The pentavanadate phase itself is not active in propane oxidation, neither in the solid nor in the molten state. The activity of the catalyst mainly originates from highly‐active, i. e., unselective VxOy surface species anchored to silica and formed during synthesis in addition to the supported pentavanadate phase. Melting of K3V5O14 leads to the coverage of these VxOy species preventing the overoxidation of propylene and leading to an increase in propylene selectivity. The change in catalyst properties is therefore due to a physical effect and not to a change in the chemical properties of the predominant crystalline phase. Liquefaction cools down the catalyst. Using operando differential scanning calorimetry, a clear correlation between the melting of a surface phase and the drastic change in the catalytic properties of an alkali‐modified catalyst in propane oxidation could be demonstrated. By covering highly active vanadium centers, the inactive melt can increase selectivity in oxidation catalysis.</description><subject>alkali</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical properties</subject><subject>Melting</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Potassium</subject><subject>Propane</subject><subject>Propylene</subject><subject>Silicon dioxide</subject><subject>vanadium</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1LAzEQhoMoWKtXzwHPW_PR7CbeZPGjUKmHeg5pMtGUNanJFu2_d0tFj55mDs_zDvMidEnJhBLCrq3t7YQRxgllU3aERlTWTcWlUse_uySn6KyUNSG14o0YoZvlG-BZ9N0WogWcPH6Crg_xFaeIW9ObbldCwSHi55w2JgJefAVn-pDiOTrxpitw8TPH6OX-btk-VvPFw6y9nVeWU8YqoG7qpRTciRVw7kAQ4epaNIQx39haAvFOOsLZqlFUCCmmyntoDCjpgVs-RleH3E1OH1sovV6nbY7DSc0U44LK4f2Bmhwom1MpGbze5PBu8k5Tovf96H0_-refQVAH4TN0sPuH1m27bP_cb5b6aBk</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Erdem, Ezgi</creator><creator>Tarasov, Andrey V.</creator><creator>Kube, Pierre</creator><creator>Koch, Gregor</creator><creator>Plodinec, Milivoj</creator><creator>Lunkenbein, Thomas</creator><creator>Carey, Spencer</creator><creator>Wang, Yuanqing</creator><creator>Hävecker, Michael</creator><creator>Rosowski, Frank</creator><creator>Schlögl, Robert</creator><creator>Trunschke, Annette</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2869-0181</orcidid></search><sort><creationdate>20240208</creationdate><title>The Influence of Melting on Catalysis in Propane Oxidation</title><author>Erdem, Ezgi ; Tarasov, Andrey V. ; Kube, Pierre ; Koch, Gregor ; Plodinec, Milivoj ; Lunkenbein, Thomas ; Carey, Spencer ; Wang, Yuanqing ; Hävecker, Michael ; Rosowski, Frank ; Schlögl, Robert ; Trunschke, Annette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-e1d4f8853d5be33de505d6657022f7c68e0fd8d032b791558549ffe7ae98fe3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alkali</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical properties</topic><topic>Melting</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Potassium</topic><topic>Propane</topic><topic>Propylene</topic><topic>Silicon dioxide</topic><topic>vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdem, Ezgi</creatorcontrib><creatorcontrib>Tarasov, Andrey V.</creatorcontrib><creatorcontrib>Kube, Pierre</creatorcontrib><creatorcontrib>Koch, Gregor</creatorcontrib><creatorcontrib>Plodinec, Milivoj</creatorcontrib><creatorcontrib>Lunkenbein, Thomas</creatorcontrib><creatorcontrib>Carey, Spencer</creatorcontrib><creatorcontrib>Wang, Yuanqing</creatorcontrib><creatorcontrib>Hävecker, Michael</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Trunschke, Annette</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdem, Ezgi</au><au>Tarasov, Andrey V.</au><au>Kube, Pierre</au><au>Koch, Gregor</au><au>Plodinec, Milivoj</au><au>Lunkenbein, Thomas</au><au>Carey, Spencer</au><au>Wang, Yuanqing</au><au>Hävecker, Michael</au><au>Rosowski, Frank</au><au>Schlögl, Robert</au><au>Trunschke, Annette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Melting on Catalysis in Propane Oxidation</atitle><jtitle>ChemCatChem</jtitle><date>2024-02-08</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>A model catalyst composed of crystalline potassium pentavanadate (K3V5O14) supported on silica was studied to elucidate the effect of phase transitions on the performance of potassium‐promoted vanadia catalysts in propane oxidation. Operando calorimetry shows a clear correlation between a drop in activity and an increase in selectivity to propylene upon melting of the crystalline K3V5O14 phase under reaction conditions. The pentavanadate phase itself is not active in propane oxidation, neither in the solid nor in the molten state. The activity of the catalyst mainly originates from highly‐active, i. e., unselective VxOy surface species anchored to silica and formed during synthesis in addition to the supported pentavanadate phase. Melting of K3V5O14 leads to the coverage of these VxOy species preventing the overoxidation of propylene and leading to an increase in propylene selectivity. The change in catalyst properties is therefore due to a physical effect and not to a change in the chemical properties of the predominant crystalline phase. Liquefaction cools down the catalyst. Using operando differential scanning calorimetry, a clear correlation between the melting of a surface phase and the drastic change in the catalytic properties of an alkali‐modified catalyst in propane oxidation could be demonstrated. By covering highly active vanadium centers, the inactive melt can increase selectivity in oxidation catalysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202301242</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2869-0181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2024-02, Vol.16 (3), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2923518100
source Wiley Online Library Journals Frontfile Complete
subjects alkali
Catalysis
Catalysts
Chemical properties
Melting
Oxidation
Phase transitions
Potassium
Propane
Propylene
Silicon dioxide
vanadium
title The Influence of Melting on Catalysis in Propane Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Melting%20on%20Catalysis%20in%20Propane%20Oxidation&rft.jtitle=ChemCatChem&rft.au=Erdem,%20Ezgi&rft.date=2024-02-08&rft.volume=16&rft.issue=3&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202301242&rft_dat=%3Cproquest_cross%3E2923518100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923518100&rft_id=info:pmid/&rfr_iscdi=true