Electronic-state-resolved non-equilibrium analysis of ICP discharges
The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside I...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2996 |
creator | Kumar, Sanjeev Munafò, Alessandro Jo, Sung Min Panesi, Marco |
description | The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution). |
doi_str_mv | 10.1063/5.0187611 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2923485626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923485626</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-65c9deed5f0b55be28dfb021034c79b66057d18a1488478c9b8d0beb9590abbb3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_8GCNyH1TbLJJkdZqxYKelDwFvK1mrLdbZNdof_elfY0c3gYZgahWwILAoI98AUQWQlCztCMcE7w5MU5mgGoEtOSfV2iq5w3AFRVlZyhp2Ub3JD6LjqcBzMEnELu29_gi67vcNiPsY02xXFbmM60hxxz0TfFqn4vfMzux6TvkK_RRWPaHG5OOkefz8uP-hWv315W9eMa7yhnAxbcKR-C5w1Yzm2g0jcWKAFWukpZIYBXnkhDSinLSjplpQcbrOIKjLWWzdHdMXeX-v0Y8qA3_ZimWllTRVkpuaBiou6PVHZxWhT7Tu9S3Jp00AT0_0ua69NL7A_XuVl5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2923485626</pqid></control><display><type>conference_proceeding</type><title>Electronic-state-resolved non-equilibrium analysis of ICP discharges</title><source>American Institute of Physics</source><creator>Kumar, Sanjeev ; Munafò, Alessandro ; Jo, Sung Min ; Panesi, Marco</creator><contributor>Xu, Kun ; Wu, Jong-Shinn ; Myong, Rho Shin</contributor><creatorcontrib>Kumar, Sanjeev ; Munafò, Alessandro ; Jo, Sung Min ; Panesi, Marco ; Xu, Kun ; Wu, Jong-Shinn ; Myong, Rho Shin</creatorcontrib><description>The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0187611</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boltzmann distribution ; Compressibility ; Discharge ; Electron states ; Equilibrium ; Equilibrium analysis ; Finite element method ; Finite volume method ; Inductively coupled plasma ; Local thermodynamic equilibrium ; Mach number ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical models</subject><ispartof>AIP conference proceedings, 2024, Vol.2996 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0187611$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Xu, Kun</contributor><contributor>Wu, Jong-Shinn</contributor><contributor>Myong, Rho Shin</contributor><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Munafò, Alessandro</creatorcontrib><creatorcontrib>Jo, Sung Min</creatorcontrib><creatorcontrib>Panesi, Marco</creatorcontrib><title>Electronic-state-resolved non-equilibrium analysis of ICP discharges</title><title>AIP conference proceedings</title><description>The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).</description><subject>Boltzmann distribution</subject><subject>Compressibility</subject><subject>Discharge</subject><subject>Electron states</subject><subject>Equilibrium</subject><subject>Equilibrium analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Inductively coupled plasma</subject><subject>Local thermodynamic equilibrium</subject><subject>Mach number</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_8GCNyH1TbLJJkdZqxYKelDwFvK1mrLdbZNdof_elfY0c3gYZgahWwILAoI98AUQWQlCztCMcE7w5MU5mgGoEtOSfV2iq5w3AFRVlZyhp2Ub3JD6LjqcBzMEnELu29_gi67vcNiPsY02xXFbmM60hxxz0TfFqn4vfMzux6TvkK_RRWPaHG5OOkefz8uP-hWv315W9eMa7yhnAxbcKR-C5w1Yzm2g0jcWKAFWukpZIYBXnkhDSinLSjplpQcbrOIKjLWWzdHdMXeX-v0Y8qA3_ZimWllTRVkpuaBiou6PVHZxWhT7Tu9S3Jp00AT0_0ua69NL7A_XuVl5</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Kumar, Sanjeev</creator><creator>Munafò, Alessandro</creator><creator>Jo, Sung Min</creator><creator>Panesi, Marco</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240208</creationdate><title>Electronic-state-resolved non-equilibrium analysis of ICP discharges</title><author>Kumar, Sanjeev ; Munafò, Alessandro ; Jo, Sung Min ; Panesi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-65c9deed5f0b55be28dfb021034c79b66057d18a1488478c9b8d0beb9590abbb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boltzmann distribution</topic><topic>Compressibility</topic><topic>Discharge</topic><topic>Electron states</topic><topic>Equilibrium</topic><topic>Equilibrium analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Inductively coupled plasma</topic><topic>Local thermodynamic equilibrium</topic><topic>Mach number</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Munafò, Alessandro</creatorcontrib><creatorcontrib>Jo, Sung Min</creatorcontrib><creatorcontrib>Panesi, Marco</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sanjeev</au><au>Munafò, Alessandro</au><au>Jo, Sung Min</au><au>Panesi, Marco</au><au>Xu, Kun</au><au>Wu, Jong-Shinn</au><au>Myong, Rho Shin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electronic-state-resolved non-equilibrium analysis of ICP discharges</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-08</date><risdate>2024</risdate><volume>2996</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0187611</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2996 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2923485626 |
source | American Institute of Physics |
subjects | Boltzmann distribution Compressibility Discharge Electron states Equilibrium Equilibrium analysis Finite element method Finite volume method Inductively coupled plasma Local thermodynamic equilibrium Mach number Magnetohydrodynamics Mathematical analysis Mathematical models |
title | Electronic-state-resolved non-equilibrium analysis of ICP discharges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electronic-state-resolved%20non-equilibrium%20analysis%20of%20ICP%20discharges&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20Sanjeev&rft.date=2024-02-08&rft.volume=2996&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0187611&rft_dat=%3Cproquest_scita%3E2923485626%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923485626&rft_id=info:pmid/&rfr_iscdi=true |