Electronic-state-resolved non-equilibrium analysis of ICP discharges

The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kumar, Sanjeev, Munafò, Alessandro, Jo, Sung Min, Panesi, Marco
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2996
creator Kumar, Sanjeev
Munafò, Alessandro
Jo, Sung Min
Panesi, Marco
description The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).
doi_str_mv 10.1063/5.0187611
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2923485626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923485626</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-65c9deed5f0b55be28dfb021034c79b66057d18a1488478c9b8d0beb9590abbb3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_8GCNyH1TbLJJkdZqxYKelDwFvK1mrLdbZNdof_elfY0c3gYZgahWwILAoI98AUQWQlCztCMcE7w5MU5mgGoEtOSfV2iq5w3AFRVlZyhp2Ub3JD6LjqcBzMEnELu29_gi67vcNiPsY02xXFbmM60hxxz0TfFqn4vfMzux6TvkK_RRWPaHG5OOkefz8uP-hWv315W9eMa7yhnAxbcKR-C5w1Yzm2g0jcWKAFWukpZIYBXnkhDSinLSjplpQcbrOIKjLWWzdHdMXeX-v0Y8qA3_ZimWllTRVkpuaBiou6PVHZxWhT7Tu9S3Jp00AT0_0ua69NL7A_XuVl5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2923485626</pqid></control><display><type>conference_proceeding</type><title>Electronic-state-resolved non-equilibrium analysis of ICP discharges</title><source>American Institute of Physics</source><creator>Kumar, Sanjeev ; Munafò, Alessandro ; Jo, Sung Min ; Panesi, Marco</creator><contributor>Xu, Kun ; Wu, Jong-Shinn ; Myong, Rho Shin</contributor><creatorcontrib>Kumar, Sanjeev ; Munafò, Alessandro ; Jo, Sung Min ; Panesi, Marco ; Xu, Kun ; Wu, Jong-Shinn ; Myong, Rho Shin</creatorcontrib><description>The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0187611</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boltzmann distribution ; Compressibility ; Discharge ; Electron states ; Equilibrium ; Equilibrium analysis ; Finite element method ; Finite volume method ; Inductively coupled plasma ; Local thermodynamic equilibrium ; Mach number ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical models</subject><ispartof>AIP conference proceedings, 2024, Vol.2996 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0187611$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Xu, Kun</contributor><contributor>Wu, Jong-Shinn</contributor><contributor>Myong, Rho Shin</contributor><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Munafò, Alessandro</creatorcontrib><creatorcontrib>Jo, Sung Min</creatorcontrib><creatorcontrib>Panesi, Marco</creatorcontrib><title>Electronic-state-resolved non-equilibrium analysis of ICP discharges</title><title>AIP conference proceedings</title><description>The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).</description><subject>Boltzmann distribution</subject><subject>Compressibility</subject><subject>Discharge</subject><subject>Electron states</subject><subject>Equilibrium</subject><subject>Equilibrium analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Inductively coupled plasma</subject><subject>Local thermodynamic equilibrium</subject><subject>Mach number</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_8GCNyH1TbLJJkdZqxYKelDwFvK1mrLdbZNdof_elfY0c3gYZgahWwILAoI98AUQWQlCztCMcE7w5MU5mgGoEtOSfV2iq5w3AFRVlZyhp2Ub3JD6LjqcBzMEnELu29_gi67vcNiPsY02xXFbmM60hxxz0TfFqn4vfMzux6TvkK_RRWPaHG5OOkefz8uP-hWv315W9eMa7yhnAxbcKR-C5w1Yzm2g0jcWKAFWukpZIYBXnkhDSinLSjplpQcbrOIKjLWWzdHdMXeX-v0Y8qA3_ZimWllTRVkpuaBiou6PVHZxWhT7Tu9S3Jp00AT0_0ua69NL7A_XuVl5</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Kumar, Sanjeev</creator><creator>Munafò, Alessandro</creator><creator>Jo, Sung Min</creator><creator>Panesi, Marco</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240208</creationdate><title>Electronic-state-resolved non-equilibrium analysis of ICP discharges</title><author>Kumar, Sanjeev ; Munafò, Alessandro ; Jo, Sung Min ; Panesi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-65c9deed5f0b55be28dfb021034c79b66057d18a1488478c9b8d0beb9590abbb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boltzmann distribution</topic><topic>Compressibility</topic><topic>Discharge</topic><topic>Electron states</topic><topic>Equilibrium</topic><topic>Equilibrium analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Inductively coupled plasma</topic><topic>Local thermodynamic equilibrium</topic><topic>Mach number</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Munafò, Alessandro</creatorcontrib><creatorcontrib>Jo, Sung Min</creatorcontrib><creatorcontrib>Panesi, Marco</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sanjeev</au><au>Munafò, Alessandro</au><au>Jo, Sung Min</au><au>Panesi, Marco</au><au>Xu, Kun</au><au>Wu, Jong-Shinn</au><au>Myong, Rho Shin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electronic-state-resolved non-equilibrium analysis of ICP discharges</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-08</date><risdate>2024</risdate><volume>2996</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The present work focuses on the study of non-equilibrium effects in radio frequency inductively coupled plasmas (ICP) using state-of-the-art electronic State-to-State (StS) model. A multi-physics computational framework has been developed to simulate the magnetohydrodynamics (MHD) phenomena inside ICPs. The fluid governing equations are discretized in space based on a cell-centered finite volume method. A preconditioned compressible formulation is adopted to tackle the stiffness resulting from low Mach numbers. Non-local thermodynamic equilibrium (NLTE) calculations are performed using either multi-temperature or State-to-State models. Electromagnetic equations are solved via a mixed finite element method. Two solvers, one for the fluid and the other for the electromagnetic phenomena, are coupled in an explicit fashion to model NLTE ICP discharges. Calculations performed using a two-temperature NLTE model highlight the importance of non-equilibrium modeling in the torch. Further, simulations performed using an electronic State-to-State model show significant deviations of the population of high-lying states from local equilibrium (e.g., Boltzmann distribution).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0187611</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2996 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2923485626
source American Institute of Physics
subjects Boltzmann distribution
Compressibility
Discharge
Electron states
Equilibrium
Equilibrium analysis
Finite element method
Finite volume method
Inductively coupled plasma
Local thermodynamic equilibrium
Mach number
Magnetohydrodynamics
Mathematical analysis
Mathematical models
title Electronic-state-resolved non-equilibrium analysis of ICP discharges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electronic-state-resolved%20non-equilibrium%20analysis%20of%20ICP%20discharges&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20Sanjeev&rft.date=2024-02-08&rft.volume=2996&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0187611&rft_dat=%3Cproquest_scita%3E2923485626%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923485626&rft_id=info:pmid/&rfr_iscdi=true