Hyperbola detection of ground penetrating radar using deep learning

Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zahir, N. H. Mohd, Ali, H., Nasri, M. I. S., Masuan, N. A., Zaidi, A. F. Ahmad, Azalan, M. S. Zanar, Amin, M. S. Mohd, Ahmad, M. R., Elshaikh, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2898
creator Zahir, N. H. Mohd
Ali, H.
Nasri, M. I. S.
Masuan, N. A.
Zaidi, A. F. Ahmad
Azalan, M. S. Zanar
Amin, M. S. Mohd
Ahmad, M. R.
Elshaikh, M.
description Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and reflect backs to the surface that receive by the antenna receiver. The antenna can lie within the range of 10MHz to 1000MHz to determine the shallow or deep penetration. Higher value of antenna will result in shallow penetration and otherwise for lower antenna. The process of recognition of buried objects is challenging task especially in the construction area to ensure safety and the quality of civil building. The GPR will display the mapping image on its control unit screen. If there are objects underground have detected, the image will display the hyperbola shape to indicate the target of the object. A vast number of data makes it difficult to classify each and every one of it either the image data is in which classes or categories. If there are many hyperbola present in image also makes it difficult to locate the accurate position. Due to this, deep learning technique by means of ResNet50 has been used in this research for hyperbola recognition in GPR image. A series of experiments has been conducted on the GPR dataset collected at Agency Nuclear Malaysia. Based on the results obtained, the deep learning model successfully learn the image feature. The accuracy of the model classified for this GPR data using ResNet50 gives 90% accuracy. Therefore, the proposed method for image recognition shows the promising results with all the GPR images are correctly recognize. Further, region of interest of hyperbola signature has been represented by a rectangular box indicates the hyperbola location
doi_str_mv 10.1063/5.0194124
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2923485538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923485538</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1684-58feacbb62a8bff13cf997935e7d424c5efbe2c950bab43c8e138247dfa249143</originalsourceid><addsrcrecordid>eNotUEtLw0AYXETBWD34Dxa8Can7THaPErQVCl4UvC37-LakxGzcJIf-e1Pa08zAMMMMQo-UrCmp-ItcE6oFZeIKFVRKWtYVra5RQYgWJRP85xbdjeOBEKbrWhWo2R4HyC51FgeYwE9t6nGKeJ_T3Ac8QA9TtlPb73G2wWY8jyceAAbcgc39ou7RTbTdCA8XXKHv97evZlvuPjcfzeuuHGilRClVBOudq5hVLkbKfdS61lxCHQQTXkJ0wLyWxFknuFdAuWKiDtEyoangK_R0zh1y-pthnMwhzblfKg3TjAslJVeL6_nsGn072dMeM-T21-ajocScTjLSXE7i_43uWU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2923485538</pqid></control><display><type>conference_proceeding</type><title>Hyperbola detection of ground penetrating radar using deep learning</title><source>AIP Journals Complete</source><creator>Zahir, N. H. Mohd ; Ali, H. ; Nasri, M. I. S. ; Masuan, N. A. ; Zaidi, A. F. Ahmad ; Azalan, M. S. Zanar ; Amin, M. S. Mohd ; Ahmad, M. R. ; Elshaikh, M.</creator><contributor>Lee, Hoi Leong ; Zakaria, Mohd Rosydi ; Zakaria, Nor Farhani ; Ahmad, Mohd Fairus ; Oung, Qi Wei ; Norizan, Mohd Natashah</contributor><creatorcontrib>Zahir, N. H. Mohd ; Ali, H. ; Nasri, M. I. S. ; Masuan, N. A. ; Zaidi, A. F. Ahmad ; Azalan, M. S. Zanar ; Amin, M. S. Mohd ; Ahmad, M. R. ; Elshaikh, M. ; Lee, Hoi Leong ; Zakaria, Mohd Rosydi ; Zakaria, Nor Farhani ; Ahmad, Mohd Fairus ; Oung, Qi Wei ; Norizan, Mohd Natashah</creatorcontrib><description>Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and reflect backs to the surface that receive by the antenna receiver. The antenna can lie within the range of 10MHz to 1000MHz to determine the shallow or deep penetration. Higher value of antenna will result in shallow penetration and otherwise for lower antenna. The process of recognition of buried objects is challenging task especially in the construction area to ensure safety and the quality of civil building. The GPR will display the mapping image on its control unit screen. If there are objects underground have detected, the image will display the hyperbola shape to indicate the target of the object. A vast number of data makes it difficult to classify each and every one of it either the image data is in which classes or categories. If there are many hyperbola present in image also makes it difficult to locate the accurate position. Due to this, deep learning technique by means of ResNet50 has been used in this research for hyperbola recognition in GPR image. A series of experiments has been conducted on the GPR dataset collected at Agency Nuclear Malaysia. Based on the results obtained, the deep learning model successfully learn the image feature. The accuracy of the model classified for this GPR data using ResNet50 gives 90% accuracy. Therefore, the proposed method for image recognition shows the promising results with all the GPR images are correctly recognize. Further, region of interest of hyperbola signature has been represented by a rectangular box indicates the hyperbola location</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0194124</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antennas ; Deep learning ; Geophysical methods ; Ground penetrating radar ; Hyperbolas ; Model accuracy ; Nuclear safety ; Radar detection ; Receivers &amp; amplifiers</subject><ispartof>AIP conference proceedings, 2024, Vol.2898 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0194124$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Lee, Hoi Leong</contributor><contributor>Zakaria, Mohd Rosydi</contributor><contributor>Zakaria, Nor Farhani</contributor><contributor>Ahmad, Mohd Fairus</contributor><contributor>Oung, Qi Wei</contributor><contributor>Norizan, Mohd Natashah</contributor><creatorcontrib>Zahir, N. H. Mohd</creatorcontrib><creatorcontrib>Ali, H.</creatorcontrib><creatorcontrib>Nasri, M. I. S.</creatorcontrib><creatorcontrib>Masuan, N. A.</creatorcontrib><creatorcontrib>Zaidi, A. F. Ahmad</creatorcontrib><creatorcontrib>Azalan, M. S. Zanar</creatorcontrib><creatorcontrib>Amin, M. S. Mohd</creatorcontrib><creatorcontrib>Ahmad, M. R.</creatorcontrib><creatorcontrib>Elshaikh, M.</creatorcontrib><title>Hyperbola detection of ground penetrating radar using deep learning</title><title>AIP conference proceedings</title><description>Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and reflect backs to the surface that receive by the antenna receiver. The antenna can lie within the range of 10MHz to 1000MHz to determine the shallow or deep penetration. Higher value of antenna will result in shallow penetration and otherwise for lower antenna. The process of recognition of buried objects is challenging task especially in the construction area to ensure safety and the quality of civil building. The GPR will display the mapping image on its control unit screen. If there are objects underground have detected, the image will display the hyperbola shape to indicate the target of the object. A vast number of data makes it difficult to classify each and every one of it either the image data is in which classes or categories. If there are many hyperbola present in image also makes it difficult to locate the accurate position. Due to this, deep learning technique by means of ResNet50 has been used in this research for hyperbola recognition in GPR image. A series of experiments has been conducted on the GPR dataset collected at Agency Nuclear Malaysia. Based on the results obtained, the deep learning model successfully learn the image feature. The accuracy of the model classified for this GPR data using ResNet50 gives 90% accuracy. Therefore, the proposed method for image recognition shows the promising results with all the GPR images are correctly recognize. Further, region of interest of hyperbola signature has been represented by a rectangular box indicates the hyperbola location</description><subject>Antennas</subject><subject>Deep learning</subject><subject>Geophysical methods</subject><subject>Ground penetrating radar</subject><subject>Hyperbolas</subject><subject>Model accuracy</subject><subject>Nuclear safety</subject><subject>Radar detection</subject><subject>Receivers &amp; amplifiers</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLw0AYXETBWD34Dxa8Can7THaPErQVCl4UvC37-LakxGzcJIf-e1Pa08zAMMMMQo-UrCmp-ItcE6oFZeIKFVRKWtYVra5RQYgWJRP85xbdjeOBEKbrWhWo2R4HyC51FgeYwE9t6nGKeJ_T3Ac8QA9TtlPb73G2wWY8jyceAAbcgc39ou7RTbTdCA8XXKHv97evZlvuPjcfzeuuHGilRClVBOudq5hVLkbKfdS61lxCHQQTXkJ0wLyWxFknuFdAuWKiDtEyoangK_R0zh1y-pthnMwhzblfKg3TjAslJVeL6_nsGn072dMeM-T21-ajocScTjLSXE7i_43uWU4</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Zahir, N. H. Mohd</creator><creator>Ali, H.</creator><creator>Nasri, M. I. S.</creator><creator>Masuan, N. A.</creator><creator>Zaidi, A. F. Ahmad</creator><creator>Azalan, M. S. Zanar</creator><creator>Amin, M. S. Mohd</creator><creator>Ahmad, M. R.</creator><creator>Elshaikh, M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240208</creationdate><title>Hyperbola detection of ground penetrating radar using deep learning</title><author>Zahir, N. H. Mohd ; Ali, H. ; Nasri, M. I. S. ; Masuan, N. A. ; Zaidi, A. F. Ahmad ; Azalan, M. S. Zanar ; Amin, M. S. Mohd ; Ahmad, M. R. ; Elshaikh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1684-58feacbb62a8bff13cf997935e7d424c5efbe2c950bab43c8e138247dfa249143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antennas</topic><topic>Deep learning</topic><topic>Geophysical methods</topic><topic>Ground penetrating radar</topic><topic>Hyperbolas</topic><topic>Model accuracy</topic><topic>Nuclear safety</topic><topic>Radar detection</topic><topic>Receivers &amp; amplifiers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahir, N. H. Mohd</creatorcontrib><creatorcontrib>Ali, H.</creatorcontrib><creatorcontrib>Nasri, M. I. S.</creatorcontrib><creatorcontrib>Masuan, N. A.</creatorcontrib><creatorcontrib>Zaidi, A. F. Ahmad</creatorcontrib><creatorcontrib>Azalan, M. S. Zanar</creatorcontrib><creatorcontrib>Amin, M. S. Mohd</creatorcontrib><creatorcontrib>Ahmad, M. R.</creatorcontrib><creatorcontrib>Elshaikh, M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahir, N. H. Mohd</au><au>Ali, H.</au><au>Nasri, M. I. S.</au><au>Masuan, N. A.</au><au>Zaidi, A. F. Ahmad</au><au>Azalan, M. S. Zanar</au><au>Amin, M. S. Mohd</au><au>Ahmad, M. R.</au><au>Elshaikh, M.</au><au>Lee, Hoi Leong</au><au>Zakaria, Mohd Rosydi</au><au>Zakaria, Nor Farhani</au><au>Ahmad, Mohd Fairus</au><au>Oung, Qi Wei</au><au>Norizan, Mohd Natashah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hyperbola detection of ground penetrating radar using deep learning</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-08</date><risdate>2024</risdate><volume>2898</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and reflect backs to the surface that receive by the antenna receiver. The antenna can lie within the range of 10MHz to 1000MHz to determine the shallow or deep penetration. Higher value of antenna will result in shallow penetration and otherwise for lower antenna. The process of recognition of buried objects is challenging task especially in the construction area to ensure safety and the quality of civil building. The GPR will display the mapping image on its control unit screen. If there are objects underground have detected, the image will display the hyperbola shape to indicate the target of the object. A vast number of data makes it difficult to classify each and every one of it either the image data is in which classes or categories. If there are many hyperbola present in image also makes it difficult to locate the accurate position. Due to this, deep learning technique by means of ResNet50 has been used in this research for hyperbola recognition in GPR image. A series of experiments has been conducted on the GPR dataset collected at Agency Nuclear Malaysia. Based on the results obtained, the deep learning model successfully learn the image feature. The accuracy of the model classified for this GPR data using ResNet50 gives 90% accuracy. Therefore, the proposed method for image recognition shows the promising results with all the GPR images are correctly recognize. Further, region of interest of hyperbola signature has been represented by a rectangular box indicates the hyperbola location</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0194124</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2898 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2923485538
source AIP Journals Complete
subjects Antennas
Deep learning
Geophysical methods
Ground penetrating radar
Hyperbolas
Model accuracy
Nuclear safety
Radar detection
Receivers & amplifiers
title Hyperbola detection of ground penetrating radar using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hyperbola%20detection%20of%20ground%20penetrating%20radar%20using%20deep%20learning&rft.btitle=AIP%20conference%20proceedings&rft.au=Zahir,%20N.%20H.%20Mohd&rft.date=2024-02-08&rft.volume=2898&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0194124&rft_dat=%3Cproquest_scita%3E2923485538%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923485538&rft_id=info:pmid/&rfr_iscdi=true