Birman–Hilden Bundles. I
A topological fibered space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We present a series of sufficient conditions f...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2024, Vol.65 (1), p.106-117 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 106 |
container_title | Siberian mathematical journal |
container_volume | 65 |
creator | Malyutin, A. V. |
description | A topological fibered space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We present a series of sufficient conditions for a fiber bundle over the circle to be a Birman–Hilden space. |
doi_str_mv | 10.1134/S0037446624010117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923406409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923406409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-815f65fc9816e6bc3213bc994ee53f7fcdc82ebc89d9be894b7010c0568443f53</originalsourceid><addsrcrecordid>eNp1kL9OwzAYxC0EEqHwADBVYk75Pv-LPdIKaKVKDMBsJY6NUqVpsZuBjXfgDXkSHAWJATHdcL-7k46QS4QZIuM3TwCs4FxKygEBsTgiGYqC5ZpKOCbZYOeDf0rOYtxAgkDqjFzNm7Atu6-Pz2XT1q6bzvuubl2cTVfn5MSXbXQXPzohL_d3z4tlvn58WC1u17llKA-5QuGl8FYrlE5WllFkldWaOyeYL7ytraKuskrXunJK86pI4xaEVJwzL9iEXI-9-7B76108mM2uD12aNFRTxkFy0InCkbJhF2Nw3uxDsy3Du0EwwwXmzwUpQ8dMTGz36sJv8_-hb6MrWvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923406409</pqid></control><display><type>article</type><title>Birman–Hilden Bundles. I</title><source>SpringerLink Journals</source><creator>Malyutin, A. V.</creator><creatorcontrib>Malyutin, A. V.</creatorcontrib><description>A topological fibered space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We present a series of sufficient conditions for a fiber bundle over the circle to be a Birman–Hilden space.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446624010117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Topology</subject><ispartof>Siberian mathematical journal, 2024, Vol.65 (1), p.106-117</ispartof><rights>Pleiades Publishing, Ltd. 2024. Russian Text © The Author(s), 2024, published in Sibirskii Matematicheskii Zhurnal, 2024, Vol. 65, No. 1, pp. 125–139.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-815f65fc9816e6bc3213bc994ee53f7fcdc82ebc89d9be894b7010c0568443f53</citedby><cites>FETCH-LOGICAL-c316t-815f65fc9816e6bc3213bc994ee53f7fcdc82ebc89d9be894b7010c0568443f53</cites><orcidid>0000-0002-4512-0124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446624010117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446624010117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Malyutin, A. V.</creatorcontrib><title>Birman–Hilden Bundles. I</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>A topological fibered space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We present a series of sufficient conditions for a fiber bundle over the circle to be a Birman–Hilden space.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topology</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAYxC0EEqHwADBVYk75Pv-LPdIKaKVKDMBsJY6NUqVpsZuBjXfgDXkSHAWJATHdcL-7k46QS4QZIuM3TwCs4FxKygEBsTgiGYqC5ZpKOCbZYOeDf0rOYtxAgkDqjFzNm7Atu6-Pz2XT1q6bzvuubl2cTVfn5MSXbXQXPzohL_d3z4tlvn58WC1u17llKA-5QuGl8FYrlE5WllFkldWaOyeYL7ytraKuskrXunJK86pI4xaEVJwzL9iEXI-9-7B76108mM2uD12aNFRTxkFy0InCkbJhF2Nw3uxDsy3Du0EwwwXmzwUpQ8dMTGz36sJv8_-hb6MrWvo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Malyutin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4512-0124</orcidid></search><sort><creationdate>2024</creationdate><title>Birman–Hilden Bundles. I</title><author>Malyutin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-815f65fc9816e6bc3213bc994ee53f7fcdc82ebc89d9be894b7010c0568443f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyutin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malyutin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Birman–Hilden Bundles. I</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2024</date><risdate>2024</risdate><volume>65</volume><issue>1</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>A topological fibered space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We present a series of sufficient conditions for a fiber bundle over the circle to be a Birman–Hilden space.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446624010117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4512-0124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2024, Vol.65 (1), p.106-117 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2923406409 |
source | SpringerLink Journals |
subjects | Mathematics Mathematics and Statistics Topology |
title | Birman–Hilden Bundles. I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Birman%E2%80%93Hilden%20Bundles.%20I&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Malyutin,%20A.%20V.&rft.date=2024&rft.volume=65&rft.issue=1&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446624010117&rft_dat=%3Cproquest_cross%3E2923406409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923406409&rft_id=info:pmid/&rfr_iscdi=true |