Lattice Path Bicircular Matroids
Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2024-04, Vol.40 (2), Article 21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Graphs and combinatorics |
container_volume | 40 |
creator | Guzmán-Pro, Santiago Hochstättler, Winfried |
description | Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it was proved that all cosimple lattice path matroids have positive double circuits, while it was shown that there is a large class of cosimple bicircular matroids with no positive double circuits. These observations support Bonin and de Miers’ claim. Finally, Sivaraman and Slilaty suggested studying the intersection of lattice path matroids and bicircular matroids as a possibly interesting research topic. In this work, we exhibit the excluded bicircular matroids for the class of lattice path matroids, and we propose a characterization of the graph family whose bicircular matroids are lattice path matroids. As an application of this characterization, we propose a geometric description of 2-connected lattice path bicircular matroids. |
doi_str_mv | 10.1007/s00373-023-02749-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923399791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923399791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d7d42af416c51eb466b9f0e4d901983bdaeeb8bd36a53d750d5acca92b9f27f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMRve80dcj1BBQQqCobvl2A6kKk2xnYF_j0uQ2Bie7nLufdIh5BLhGgHUTQLgilNgh1NCU3ZEZii4pFKjOCYz0IgUEPUpOUtpAwASBcxI1dicexeqV5vfq7ve9dGNWxurZ5vj0Pt0Tk46u03h4jfnZP1wv14-0uZl9bS8bajjKDL1ygtmO4G1kxhaUdet7iAIrwH1grfehtAuWs9rK7lXEry0zlnNCsZUx-fkaprdx-FzDCmbzTDGXflomGaca600FopNlItDSjF0Zh_7Dxu_DII5iDCTCFNEmB8RhpUSn0qpwLu3EP-m_2l9A0LIX10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923399791</pqid></control><display><type>article</type><title>Lattice Path Bicircular Matroids</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guzmán-Pro, Santiago ; Hochstättler, Winfried</creator><creatorcontrib>Guzmán-Pro, Santiago ; Hochstättler, Winfried</creatorcontrib><description>Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it was proved that all cosimple lattice path matroids have positive double circuits, while it was shown that there is a large class of cosimple bicircular matroids with no positive double circuits. These observations support Bonin and de Miers’ claim. Finally, Sivaraman and Slilaty suggested studying the intersection of lattice path matroids and bicircular matroids as a possibly interesting research topic. In this work, we exhibit the excluded bicircular matroids for the class of lattice path matroids, and we propose a characterization of the graph family whose bicircular matroids are lattice path matroids. As an application of this characterization, we propose a geometric description of 2-connected lattice path bicircular matroids.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-023-02749-2</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Circuits ; Combinatorics ; Engineering Design ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2024-04, Vol.40 (2), Article 21</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-d7d42af416c51eb466b9f0e4d901983bdaeeb8bd36a53d750d5acca92b9f27f3</cites><orcidid>0000-0003-0312-9654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-023-02749-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-023-02749-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guzmán-Pro, Santiago</creatorcontrib><creatorcontrib>Hochstättler, Winfried</creatorcontrib><title>Lattice Path Bicircular Matroids</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it was proved that all cosimple lattice path matroids have positive double circuits, while it was shown that there is a large class of cosimple bicircular matroids with no positive double circuits. These observations support Bonin and de Miers’ claim. Finally, Sivaraman and Slilaty suggested studying the intersection of lattice path matroids and bicircular matroids as a possibly interesting research topic. In this work, we exhibit the excluded bicircular matroids for the class of lattice path matroids, and we propose a characterization of the graph family whose bicircular matroids are lattice path matroids. As an application of this characterization, we propose a geometric description of 2-connected lattice path bicircular matroids.</description><subject>Circuits</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5giMRve80dcj1BBQQqCobvl2A6kKk2xnYF_j0uQ2Bie7nLufdIh5BLhGgHUTQLgilNgh1NCU3ZEZii4pFKjOCYz0IgUEPUpOUtpAwASBcxI1dicexeqV5vfq7ve9dGNWxurZ5vj0Pt0Tk46u03h4jfnZP1wv14-0uZl9bS8bajjKDL1ygtmO4G1kxhaUdet7iAIrwH1grfehtAuWs9rK7lXEry0zlnNCsZUx-fkaprdx-FzDCmbzTDGXflomGaca600FopNlItDSjF0Zh_7Dxu_DII5iDCTCFNEmB8RhpUSn0qpwLu3EP-m_2l9A0LIX10</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Guzmán-Pro, Santiago</creator><creator>Hochstättler, Winfried</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0312-9654</orcidid></search><sort><creationdate>20240401</creationdate><title>Lattice Path Bicircular Matroids</title><author>Guzmán-Pro, Santiago ; Hochstättler, Winfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d7d42af416c51eb466b9f0e4d901983bdaeeb8bd36a53d750d5acca92b9f27f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán-Pro, Santiago</creatorcontrib><creatorcontrib>Hochstättler, Winfried</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán-Pro, Santiago</au><au>Hochstättler, Winfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Path Bicircular Matroids</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><artnum>21</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it was proved that all cosimple lattice path matroids have positive double circuits, while it was shown that there is a large class of cosimple bicircular matroids with no positive double circuits. These observations support Bonin and de Miers’ claim. Finally, Sivaraman and Slilaty suggested studying the intersection of lattice path matroids and bicircular matroids as a possibly interesting research topic. In this work, we exhibit the excluded bicircular matroids for the class of lattice path matroids, and we propose a characterization of the graph family whose bicircular matroids are lattice path matroids. As an application of this characterization, we propose a geometric description of 2-connected lattice path bicircular matroids.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-023-02749-2</doi><orcidid>https://orcid.org/0000-0003-0312-9654</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2024-04, Vol.40 (2), Article 21 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2923399791 |
source | SpringerLink Journals - AutoHoldings |
subjects | Circuits Combinatorics Engineering Design Mathematics Mathematics and Statistics Original Paper |
title | Lattice Path Bicircular Matroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Path%20Bicircular%20Matroids&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Guzm%C3%A1n-Pro,%20Santiago&rft.date=2024-04-01&rft.volume=40&rft.issue=2&rft.artnum=21&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-023-02749-2&rft_dat=%3Cproquest_cross%3E2923399791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923399791&rft_id=info:pmid/&rfr_iscdi=true |