A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach
The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s −...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2024-03, Vol.55 (3), p.933-954 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 954 |
---|---|
container_issue | 3 |
container_start_page | 933 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 55 |
creator | Zyguła, Krystian Lypchanskyi, Oleksandr Łukaszek-Sołek, Aneta Korpała, Grzegorz Stanik, Rafał Kubiś, Michał Przybyszewski, Bartłomiej Wojtaszek, Marek Gude, Maik Prahl, Ulrich |
description | The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s
−1
. Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s
−1
. Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters. |
doi_str_mv | 10.1007/s11661-024-07297-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923163694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923163694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</originalsourceid><addsrcrecordid>eNp9kMtO3DAUhqMKJIbLC7Cy1HVaXxInXs4MtCCBQALWlhMfz2TkxMF2QHkJHqYPwjPhMpW6Y3X-I_0X6cuyc4J_EIyrn4EQzkmOaZHjiooqF9-yBSkLlhNR4IOkccXyklN2lB2HsMMYE8H4IntborXrRw9bGEL3AughTnpGbkBXLqILMM73KnbpX8FWvXTOI2dQ3AK6hahCVI0F9P4HPXZRDd3Uo6W1bkb3HkblQaNmRisLg07y0kIPQ1QW3btXDf6zwdrJb2a0HEfvVLs9zQ6NsgHO_t2T7OnX5eP6Kr-5-329Xt7kLSMi5rUoiprpgpcthVoYXHLTlLStOAVdNlrpqilrTA0IIbAxFdUtKUoClCuoa8JOsu_73jT7PEGIcucmP6RJSQVlhDMuiuSie1frXQgejBx91ys_S4LlX-5yz10m7vKTuxQpxPahkMzDBvz_6i9SH1_Hh_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923163694</pqid></control><display><type>article</type><title>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zyguła, Krystian ; Lypchanskyi, Oleksandr ; Łukaszek-Sołek, Aneta ; Korpała, Grzegorz ; Stanik, Rafał ; Kubiś, Michał ; Przybyszewski, Bartłomiej ; Wojtaszek, Marek ; Gude, Maik ; Prahl, Ulrich</creator><creatorcontrib>Zyguła, Krystian ; Lypchanskyi, Oleksandr ; Łukaszek-Sołek, Aneta ; Korpała, Grzegorz ; Stanik, Rafał ; Kubiś, Michał ; Przybyszewski, Bartłomiej ; Wojtaszek, Marek ; Gude, Maik ; Prahl, Ulrich</creatorcontrib><description>The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s
−1
. Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s
−1
. Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-024-07297-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloying elements ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compression tests ; Constitutive models ; Deformation ; Hot pressing ; Hot rolling ; Materials Science ; Mathematical models ; Metallic Materials ; Microstructure ; Nanotechnology ; Optimization ; Original Research Article ; Powder metallurgy ; Process mapping ; Process parameters ; Recrystallization ; Stress-strain relationships ; Structural Materials ; Surfaces and Interfaces ; Tensile properties ; Tensile strength ; Thin Films ; Titanium alloys ; Titanium base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-03, Vol.55 (3), p.933-954</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</citedby><cites>FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-024-07297-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-024-07297-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zyguła, Krystian</creatorcontrib><creatorcontrib>Lypchanskyi, Oleksandr</creatorcontrib><creatorcontrib>Łukaszek-Sołek, Aneta</creatorcontrib><creatorcontrib>Korpała, Grzegorz</creatorcontrib><creatorcontrib>Stanik, Rafał</creatorcontrib><creatorcontrib>Kubiś, Michał</creatorcontrib><creatorcontrib>Przybyszewski, Bartłomiej</creatorcontrib><creatorcontrib>Wojtaszek, Marek</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Prahl, Ulrich</creatorcontrib><title>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s
−1
. Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s
−1
. Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.</description><subject>Alloying elements</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compression tests</subject><subject>Constitutive models</subject><subject>Deformation</subject><subject>Hot pressing</subject><subject>Hot rolling</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Original Research Article</subject><subject>Powder metallurgy</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>Recrystallization</subject><subject>Stress-strain relationships</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Thin Films</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtO3DAUhqMKJIbLC7Cy1HVaXxInXs4MtCCBQALWlhMfz2TkxMF2QHkJHqYPwjPhMpW6Y3X-I_0X6cuyc4J_EIyrn4EQzkmOaZHjiooqF9-yBSkLlhNR4IOkccXyklN2lB2HsMMYE8H4IntborXrRw9bGEL3AughTnpGbkBXLqILMM73KnbpX8FWvXTOI2dQ3AK6hahCVI0F9P4HPXZRDd3Uo6W1bkb3HkblQaNmRisLg07y0kIPQ1QW3btXDf6zwdrJb2a0HEfvVLs9zQ6NsgHO_t2T7OnX5eP6Kr-5-329Xt7kLSMi5rUoiprpgpcthVoYXHLTlLStOAVdNlrpqilrTA0IIbAxFdUtKUoClCuoa8JOsu_73jT7PEGIcucmP6RJSQVlhDMuiuSie1frXQgejBx91ys_S4LlX-5yz10m7vKTuxQpxPahkMzDBvz_6i9SH1_Hh_Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zyguła, Krystian</creator><creator>Lypchanskyi, Oleksandr</creator><creator>Łukaszek-Sołek, Aneta</creator><creator>Korpała, Grzegorz</creator><creator>Stanik, Rafał</creator><creator>Kubiś, Michał</creator><creator>Przybyszewski, Bartłomiej</creator><creator>Wojtaszek, Marek</creator><creator>Gude, Maik</creator><creator>Prahl, Ulrich</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240301</creationdate><title>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</title><author>Zyguła, Krystian ; Lypchanskyi, Oleksandr ; Łukaszek-Sołek, Aneta ; Korpała, Grzegorz ; Stanik, Rafał ; Kubiś, Michał ; Przybyszewski, Bartłomiej ; Wojtaszek, Marek ; Gude, Maik ; Prahl, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying elements</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compression tests</topic><topic>Constitutive models</topic><topic>Deformation</topic><topic>Hot pressing</topic><topic>Hot rolling</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Original Research Article</topic><topic>Powder metallurgy</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>Recrystallization</topic><topic>Stress-strain relationships</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Thin Films</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zyguła, Krystian</creatorcontrib><creatorcontrib>Lypchanskyi, Oleksandr</creatorcontrib><creatorcontrib>Łukaszek-Sołek, Aneta</creatorcontrib><creatorcontrib>Korpała, Grzegorz</creatorcontrib><creatorcontrib>Stanik, Rafał</creatorcontrib><creatorcontrib>Kubiś, Michał</creatorcontrib><creatorcontrib>Przybyszewski, Bartłomiej</creatorcontrib><creatorcontrib>Wojtaszek, Marek</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Prahl, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zyguła, Krystian</au><au>Lypchanskyi, Oleksandr</au><au>Łukaszek-Sołek, Aneta</au><au>Korpała, Grzegorz</au><au>Stanik, Rafał</au><au>Kubiś, Michał</au><au>Przybyszewski, Bartłomiej</au><au>Wojtaszek, Marek</au><au>Gude, Maik</au><au>Prahl, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>55</volume><issue>3</issue><spage>933</spage><epage>954</epage><pages>933-954</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s
−1
. Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s
−1
. Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-024-07297-9</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-03, Vol.55 (3), p.933-954 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2923163694 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloying elements Characterization and Evaluation of Materials Chemistry and Materials Science Compression tests Constitutive models Deformation Hot pressing Hot rolling Materials Science Mathematical models Metallic Materials Microstructure Nanotechnology Optimization Original Research Article Powder metallurgy Process mapping Process parameters Recrystallization Stress-strain relationships Structural Materials Surfaces and Interfaces Tensile properties Tensile strength Thin Films Titanium alloys Titanium base alloys |
title | A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Study%20on%20Hot%20Deformation%20Behavior%20of%20the%20Metastable%20%CE%B2%20Titanium%20Alloy%20Prepared%20by%20Blended%20Elemental%20Powder%20Metallurgy%20Approach&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Zygu%C5%82a,%20Krystian&rft.date=2024-03-01&rft.volume=55&rft.issue=3&rft.spage=933&rft.epage=954&rft.pages=933-954&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-024-07297-9&rft_dat=%3Cproquest_cross%3E2923163694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923163694&rft_id=info:pmid/&rfr_iscdi=true |