A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach

The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s −...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2024-03, Vol.55 (3), p.933-954
Hauptverfasser: Zyguła, Krystian, Lypchanskyi, Oleksandr, Łukaszek-Sołek, Aneta, Korpała, Grzegorz, Stanik, Rafał, Kubiś, Michał, Przybyszewski, Bartłomiej, Wojtaszek, Marek, Gude, Maik, Prahl, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 954
container_issue 3
container_start_page 933
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 55
creator Zyguła, Krystian
Lypchanskyi, Oleksandr
Łukaszek-Sołek, Aneta
Korpała, Grzegorz
Stanik, Rafał
Kubiś, Michał
Przybyszewski, Bartłomiej
Wojtaszek, Marek
Gude, Maik
Prahl, Ulrich
description The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s −1 . Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s −1 . Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.
doi_str_mv 10.1007/s11661-024-07297-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923163694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923163694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</originalsourceid><addsrcrecordid>eNp9kMtO3DAUhqMKJIbLC7Cy1HVaXxInXs4MtCCBQALWlhMfz2TkxMF2QHkJHqYPwjPhMpW6Y3X-I_0X6cuyc4J_EIyrn4EQzkmOaZHjiooqF9-yBSkLlhNR4IOkccXyklN2lB2HsMMYE8H4IntborXrRw9bGEL3AughTnpGbkBXLqILMM73KnbpX8FWvXTOI2dQ3AK6hahCVI0F9P4HPXZRDd3Uo6W1bkb3HkblQaNmRisLg07y0kIPQ1QW3btXDf6zwdrJb2a0HEfvVLs9zQ6NsgHO_t2T7OnX5eP6Kr-5-329Xt7kLSMi5rUoiprpgpcthVoYXHLTlLStOAVdNlrpqilrTA0IIbAxFdUtKUoClCuoa8JOsu_73jT7PEGIcucmP6RJSQVlhDMuiuSie1frXQgejBx91ys_S4LlX-5yz10m7vKTuxQpxPahkMzDBvz_6i9SH1_Hh_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923163694</pqid></control><display><type>article</type><title>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zyguła, Krystian ; Lypchanskyi, Oleksandr ; Łukaszek-Sołek, Aneta ; Korpała, Grzegorz ; Stanik, Rafał ; Kubiś, Michał ; Przybyszewski, Bartłomiej ; Wojtaszek, Marek ; Gude, Maik ; Prahl, Ulrich</creator><creatorcontrib>Zyguła, Krystian ; Lypchanskyi, Oleksandr ; Łukaszek-Sołek, Aneta ; Korpała, Grzegorz ; Stanik, Rafał ; Kubiś, Michał ; Przybyszewski, Bartłomiej ; Wojtaszek, Marek ; Gude, Maik ; Prahl, Ulrich</creatorcontrib><description>The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s −1 . Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s −1 . Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-024-07297-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloying elements ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compression tests ; Constitutive models ; Deformation ; Hot pressing ; Hot rolling ; Materials Science ; Mathematical models ; Metallic Materials ; Microstructure ; Nanotechnology ; Optimization ; Original Research Article ; Powder metallurgy ; Process mapping ; Process parameters ; Recrystallization ; Stress-strain relationships ; Structural Materials ; Surfaces and Interfaces ; Tensile properties ; Tensile strength ; Thin Films ; Titanium alloys ; Titanium base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-03, Vol.55 (3), p.933-954</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</citedby><cites>FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-024-07297-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-024-07297-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zyguła, Krystian</creatorcontrib><creatorcontrib>Lypchanskyi, Oleksandr</creatorcontrib><creatorcontrib>Łukaszek-Sołek, Aneta</creatorcontrib><creatorcontrib>Korpała, Grzegorz</creatorcontrib><creatorcontrib>Stanik, Rafał</creatorcontrib><creatorcontrib>Kubiś, Michał</creatorcontrib><creatorcontrib>Przybyszewski, Bartłomiej</creatorcontrib><creatorcontrib>Wojtaszek, Marek</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Prahl, Ulrich</creatorcontrib><title>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s −1 . Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s −1 . Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.</description><subject>Alloying elements</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compression tests</subject><subject>Constitutive models</subject><subject>Deformation</subject><subject>Hot pressing</subject><subject>Hot rolling</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Original Research Article</subject><subject>Powder metallurgy</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>Recrystallization</subject><subject>Stress-strain relationships</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Thin Films</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtO3DAUhqMKJIbLC7Cy1HVaXxInXs4MtCCBQALWlhMfz2TkxMF2QHkJHqYPwjPhMpW6Y3X-I_0X6cuyc4J_EIyrn4EQzkmOaZHjiooqF9-yBSkLlhNR4IOkccXyklN2lB2HsMMYE8H4IntborXrRw9bGEL3AughTnpGbkBXLqILMM73KnbpX8FWvXTOI2dQ3AK6hahCVI0F9P4HPXZRDd3Uo6W1bkb3HkblQaNmRisLg07y0kIPQ1QW3btXDf6zwdrJb2a0HEfvVLs9zQ6NsgHO_t2T7OnX5eP6Kr-5-329Xt7kLSMi5rUoiprpgpcthVoYXHLTlLStOAVdNlrpqilrTA0IIbAxFdUtKUoClCuoa8JOsu_73jT7PEGIcucmP6RJSQVlhDMuiuSie1frXQgejBx91ys_S4LlX-5yz10m7vKTuxQpxPahkMzDBvz_6i9SH1_Hh_Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zyguła, Krystian</creator><creator>Lypchanskyi, Oleksandr</creator><creator>Łukaszek-Sołek, Aneta</creator><creator>Korpała, Grzegorz</creator><creator>Stanik, Rafał</creator><creator>Kubiś, Michał</creator><creator>Przybyszewski, Bartłomiej</creator><creator>Wojtaszek, Marek</creator><creator>Gude, Maik</creator><creator>Prahl, Ulrich</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240301</creationdate><title>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</title><author>Zyguła, Krystian ; Lypchanskyi, Oleksandr ; Łukaszek-Sołek, Aneta ; Korpała, Grzegorz ; Stanik, Rafał ; Kubiś, Michał ; Przybyszewski, Bartłomiej ; Wojtaszek, Marek ; Gude, Maik ; Prahl, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-894483d465c2e89f056fb52c762ed5bdad7b5802fe9990ff72dc1451e26ae8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying elements</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compression tests</topic><topic>Constitutive models</topic><topic>Deformation</topic><topic>Hot pressing</topic><topic>Hot rolling</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Original Research Article</topic><topic>Powder metallurgy</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>Recrystallization</topic><topic>Stress-strain relationships</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Thin Films</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zyguła, Krystian</creatorcontrib><creatorcontrib>Lypchanskyi, Oleksandr</creatorcontrib><creatorcontrib>Łukaszek-Sołek, Aneta</creatorcontrib><creatorcontrib>Korpała, Grzegorz</creatorcontrib><creatorcontrib>Stanik, Rafał</creatorcontrib><creatorcontrib>Kubiś, Michał</creatorcontrib><creatorcontrib>Przybyszewski, Bartłomiej</creatorcontrib><creatorcontrib>Wojtaszek, Marek</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Prahl, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zyguła, Krystian</au><au>Lypchanskyi, Oleksandr</au><au>Łukaszek-Sołek, Aneta</au><au>Korpała, Grzegorz</au><au>Stanik, Rafał</au><au>Kubiś, Michał</au><au>Przybyszewski, Bartłomiej</au><au>Wojtaszek, Marek</au><au>Gude, Maik</au><au>Prahl, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>55</volume><issue>3</issue><spage>933</spage><epage>954</epage><pages>933-954</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s −1 . Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s −1 . Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-024-07297-9</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-03, Vol.55 (3), p.933-954
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2923163694
source SpringerLink Journals - AutoHoldings
subjects Alloying elements
Characterization and Evaluation of Materials
Chemistry and Materials Science
Compression tests
Constitutive models
Deformation
Hot pressing
Hot rolling
Materials Science
Mathematical models
Metallic Materials
Microstructure
Nanotechnology
Optimization
Original Research Article
Powder metallurgy
Process mapping
Process parameters
Recrystallization
Stress-strain relationships
Structural Materials
Surfaces and Interfaces
Tensile properties
Tensile strength
Thin Films
Titanium alloys
Titanium base alloys
title A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Study%20on%20Hot%20Deformation%20Behavior%20of%20the%20Metastable%20%CE%B2%20Titanium%20Alloy%20Prepared%20by%20Blended%20Elemental%20Powder%20Metallurgy%20Approach&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Zygu%C5%82a,%20Krystian&rft.date=2024-03-01&rft.volume=55&rft.issue=3&rft.spage=933&rft.epage=954&rft.pages=933-954&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-024-07297-9&rft_dat=%3Cproquest_cross%3E2923163694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923163694&rft_id=info:pmid/&rfr_iscdi=true