Subtype-Aware Dynamic Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-02, Vol.35 (2), p.2820-2834 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2834 |
---|---|
container_issue | 2 |
container_start_page | 2820 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Liu, Xiaofeng Xing, Fangxu You, Jane Lu, Jun Kuo, C.-C. Jay Fakhri, Georges El Woo, Jonghye |
description | Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods. |
doi_str_mv | 10.1109/TNNLS.2022.3192315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2923126198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9843897</ieee_id><sourcerecordid>2695291829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9a3c58f7bae5cc3fe2b48b1ea99907822bc3b50c1972a23cd0c63f0aa3cb7c843</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoVmr_gIIMuHEzNXmZzCTL0voFpS7agruQZDIwpfNhMqP035va2oXZJJBzL-8dhG4IHhOCxeNqsZgvx4ABxpQIoISdoSsgKcRAOT8_vbOPARp5v8HhpJilibhEA8q4YCmjVyhZ9rrbtTaefCtno9muVlVponXt-9a6r9LbPJo1lSrraJKrtlNd2dTX6KJQW29Hx3uI1s9Pq-lrPH9_eZtO5rGhjHSxUNQwXmRaWWYMLSzohGtilRACZxxAG6oZNkRkoICaHJuUFliFmM4MT-gQPRx6W9d89tZ3siq9sdutqm3TewmpYCAIBxHQ-3_opuldHaaTsLcDKRE8UHCgjGu8d7aQrSsr5XaSYLnXKn-1yr1WedQaQnfH6l5XNj9F_iQG4PYAlNba07cIC3CR0R9ZHHq1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923126198</pqid></control><display><type>article</type><title>Subtype-Aware Dynamic Unsupervised Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiaofeng ; Xing, Fangxu ; You, Jane ; Lu, Jun ; Kuo, C.-C. Jay ; Fakhri, Georges El ; Woo, Jonghye</creator><creatorcontrib>Liu, Xiaofeng ; Xing, Fangxu ; You, Jane ; Lu, Jun ; Kuo, C.-C. Jay ; Fakhri, Georges El ; Woo, Jonghye</creatorcontrib><description>Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3192315</identifier><identifier>PMID: 35895653</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Alignment ; Automobiles ; Biomedical imaging ; Cardiovascular diseases ; Centroids ; Conditional shift ; Costs ; Diseases ; Feature extraction ; Heart diseases ; Knowledge management ; label shift ; Labels ; medical image diagnosis ; subtype ; Task analysis ; Training ; unsupervised domain adaptation (UDA)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-02, Vol.35 (2), p.2820-2834</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9a3c58f7bae5cc3fe2b48b1ea99907822bc3b50c1972a23cd0c63f0aa3cb7c843</citedby><orcidid>0000-0002-4514-2016 ; 0000-0002-9005-6993 ; 0000-0001-9474-5035 ; 0000-0002-5621-9218 ; 0000-0002-8181-4836 ; 0000-0002-0517-0952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9843897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9843897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35895653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xing, Fangxu</creatorcontrib><creatorcontrib>You, Jane</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Kuo, C.-C. Jay</creatorcontrib><creatorcontrib>Fakhri, Georges El</creatorcontrib><creatorcontrib>Woo, Jonghye</creatorcontrib><title>Subtype-Aware Dynamic Unsupervised Domain Adaptation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.</description><subject>Adaptation</subject><subject>Alignment</subject><subject>Automobiles</subject><subject>Biomedical imaging</subject><subject>Cardiovascular diseases</subject><subject>Centroids</subject><subject>Conditional shift</subject><subject>Costs</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Heart diseases</subject><subject>Knowledge management</subject><subject>label shift</subject><subject>Labels</subject><subject>medical image diagnosis</subject><subject>subtype</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised domain adaptation (UDA)</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoVmr_gIIMuHEzNXmZzCTL0voFpS7agruQZDIwpfNhMqP035va2oXZJJBzL-8dhG4IHhOCxeNqsZgvx4ABxpQIoISdoSsgKcRAOT8_vbOPARp5v8HhpJilibhEA8q4YCmjVyhZ9rrbtTaefCtno9muVlVponXt-9a6r9LbPJo1lSrraJKrtlNd2dTX6KJQW29Hx3uI1s9Pq-lrPH9_eZtO5rGhjHSxUNQwXmRaWWYMLSzohGtilRACZxxAG6oZNkRkoICaHJuUFliFmM4MT-gQPRx6W9d89tZ3siq9sdutqm3TewmpYCAIBxHQ-3_opuldHaaTsLcDKRE8UHCgjGu8d7aQrSsr5XaSYLnXKn-1yr1WedQaQnfH6l5XNj9F_iQG4PYAlNba07cIC3CR0R9ZHHq1</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Liu, Xiaofeng</creator><creator>Xing, Fangxu</creator><creator>You, Jane</creator><creator>Lu, Jun</creator><creator>Kuo, C.-C. Jay</creator><creator>Fakhri, Georges El</creator><creator>Woo, Jonghye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4514-2016</orcidid><orcidid>https://orcid.org/0000-0002-9005-6993</orcidid><orcidid>https://orcid.org/0000-0001-9474-5035</orcidid><orcidid>https://orcid.org/0000-0002-5621-9218</orcidid><orcidid>https://orcid.org/0000-0002-8181-4836</orcidid><orcidid>https://orcid.org/0000-0002-0517-0952</orcidid></search><sort><creationdate>20240201</creationdate><title>Subtype-Aware Dynamic Unsupervised Domain Adaptation</title><author>Liu, Xiaofeng ; Xing, Fangxu ; You, Jane ; Lu, Jun ; Kuo, C.-C. Jay ; Fakhri, Georges El ; Woo, Jonghye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9a3c58f7bae5cc3fe2b48b1ea99907822bc3b50c1972a23cd0c63f0aa3cb7c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Alignment</topic><topic>Automobiles</topic><topic>Biomedical imaging</topic><topic>Cardiovascular diseases</topic><topic>Centroids</topic><topic>Conditional shift</topic><topic>Costs</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Heart diseases</topic><topic>Knowledge management</topic><topic>label shift</topic><topic>Labels</topic><topic>medical image diagnosis</topic><topic>subtype</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised domain adaptation (UDA)</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xing, Fangxu</creatorcontrib><creatorcontrib>You, Jane</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Kuo, C.-C. Jay</creatorcontrib><creatorcontrib>Fakhri, Georges El</creatorcontrib><creatorcontrib>Woo, Jonghye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiaofeng</au><au>Xing, Fangxu</au><au>You, Jane</au><au>Lu, Jun</au><au>Kuo, C.-C. Jay</au><au>Fakhri, Georges El</au><au>Woo, Jonghye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subtype-Aware Dynamic Unsupervised Domain Adaptation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>2820</spage><epage>2834</epage><pages>2820-2834</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35895653</pmid><doi>10.1109/TNNLS.2022.3192315</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4514-2016</orcidid><orcidid>https://orcid.org/0000-0002-9005-6993</orcidid><orcidid>https://orcid.org/0000-0001-9474-5035</orcidid><orcidid>https://orcid.org/0000-0002-5621-9218</orcidid><orcidid>https://orcid.org/0000-0002-8181-4836</orcidid><orcidid>https://orcid.org/0000-0002-0517-0952</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-02, Vol.35 (2), p.2820-2834 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2923126198 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Alignment Automobiles Biomedical imaging Cardiovascular diseases Centroids Conditional shift Costs Diseases Feature extraction Heart diseases Knowledge management label shift Labels medical image diagnosis subtype Task analysis Training unsupervised domain adaptation (UDA) |
title | Subtype-Aware Dynamic Unsupervised Domain Adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subtype-Aware%20Dynamic%20Unsupervised%20Domain%20Adaptation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Xiaofeng&rft.date=2024-02-01&rft.volume=35&rft.issue=2&rft.spage=2820&rft.epage=2834&rft.pages=2820-2834&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3192315&rft_dat=%3Cproquest_RIE%3E2695291829%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923126198&rft_id=info:pmid/35895653&rft_ieee_id=9843897&rfr_iscdi=true |