Subtype-Aware Dynamic Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-02, Vol.35 (2), p.2820-2834
Hauptverfasser: Liu, Xiaofeng, Xing, Fangxu, You, Jane, Lu, Jun, Kuo, C.-C. Jay, Fakhri, Georges El, Woo, Jonghye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2834
container_issue 2
container_start_page 2820
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Liu, Xiaofeng
Xing, Fangxu
You, Jane
Lu, Jun
Kuo, C.-C. Jay
Fakhri, Georges El
Woo, Jonghye
description Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.
doi_str_mv 10.1109/TNNLS.2022.3192315
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2923126198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9843897</ieee_id><sourcerecordid>2695291829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9a3c58f7bae5cc3fe2b48b1ea99907822bc3b50c1972a23cd0c63f0aa3cb7c843</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoVmr_gIIMuHEzNXmZzCTL0voFpS7agruQZDIwpfNhMqP035va2oXZJJBzL-8dhG4IHhOCxeNqsZgvx4ABxpQIoISdoSsgKcRAOT8_vbOPARp5v8HhpJilibhEA8q4YCmjVyhZ9rrbtTaefCtno9muVlVponXt-9a6r9LbPJo1lSrraJKrtlNd2dTX6KJQW29Hx3uI1s9Pq-lrPH9_eZtO5rGhjHSxUNQwXmRaWWYMLSzohGtilRACZxxAG6oZNkRkoICaHJuUFliFmM4MT-gQPRx6W9d89tZ3siq9sdutqm3TewmpYCAIBxHQ-3_opuldHaaTsLcDKRE8UHCgjGu8d7aQrSsr5XaSYLnXKn-1yr1WedQaQnfH6l5XNj9F_iQG4PYAlNba07cIC3CR0R9ZHHq1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923126198</pqid></control><display><type>article</type><title>Subtype-Aware Dynamic Unsupervised Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiaofeng ; Xing, Fangxu ; You, Jane ; Lu, Jun ; Kuo, C.-C. Jay ; Fakhri, Georges El ; Woo, Jonghye</creator><creatorcontrib>Liu, Xiaofeng ; Xing, Fangxu ; You, Jane ; Lu, Jun ; Kuo, C.-C. Jay ; Fakhri, Georges El ; Woo, Jonghye</creatorcontrib><description>Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3192315</identifier><identifier>PMID: 35895653</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Alignment ; Automobiles ; Biomedical imaging ; Cardiovascular diseases ; Centroids ; Conditional shift ; Costs ; Diseases ; Feature extraction ; Heart diseases ; Knowledge management ; label shift ; Labels ; medical image diagnosis ; subtype ; Task analysis ; Training ; unsupervised domain adaptation (UDA)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-02, Vol.35 (2), p.2820-2834</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9a3c58f7bae5cc3fe2b48b1ea99907822bc3b50c1972a23cd0c63f0aa3cb7c843</citedby><orcidid>0000-0002-4514-2016 ; 0000-0002-9005-6993 ; 0000-0001-9474-5035 ; 0000-0002-5621-9218 ; 0000-0002-8181-4836 ; 0000-0002-0517-0952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9843897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9843897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35895653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xing, Fangxu</creatorcontrib><creatorcontrib>You, Jane</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Kuo, C.-C. Jay</creatorcontrib><creatorcontrib>Fakhri, Georges El</creatorcontrib><creatorcontrib>Woo, Jonghye</creatorcontrib><title>Subtype-Aware Dynamic Unsupervised Domain Adaptation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.</description><subject>Adaptation</subject><subject>Alignment</subject><subject>Automobiles</subject><subject>Biomedical imaging</subject><subject>Cardiovascular diseases</subject><subject>Centroids</subject><subject>Conditional shift</subject><subject>Costs</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Heart diseases</subject><subject>Knowledge management</subject><subject>label shift</subject><subject>Labels</subject><subject>medical image diagnosis</subject><subject>subtype</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised domain adaptation (UDA)</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoVmr_gIIMuHEzNXmZzCTL0voFpS7agruQZDIwpfNhMqP035va2oXZJJBzL-8dhG4IHhOCxeNqsZgvx4ABxpQIoISdoSsgKcRAOT8_vbOPARp5v8HhpJilibhEA8q4YCmjVyhZ9rrbtTaefCtno9muVlVponXt-9a6r9LbPJo1lSrraJKrtlNd2dTX6KJQW29Hx3uI1s9Pq-lrPH9_eZtO5rGhjHSxUNQwXmRaWWYMLSzohGtilRACZxxAG6oZNkRkoICaHJuUFliFmM4MT-gQPRx6W9d89tZ3siq9sdutqm3TewmpYCAIBxHQ-3_opuldHaaTsLcDKRE8UHCgjGu8d7aQrSsr5XaSYLnXKn-1yr1WedQaQnfH6l5XNj9F_iQG4PYAlNba07cIC3CR0R9ZHHq1</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Liu, Xiaofeng</creator><creator>Xing, Fangxu</creator><creator>You, Jane</creator><creator>Lu, Jun</creator><creator>Kuo, C.-C. Jay</creator><creator>Fakhri, Georges El</creator><creator>Woo, Jonghye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4514-2016</orcidid><orcidid>https://orcid.org/0000-0002-9005-6993</orcidid><orcidid>https://orcid.org/0000-0001-9474-5035</orcidid><orcidid>https://orcid.org/0000-0002-5621-9218</orcidid><orcidid>https://orcid.org/0000-0002-8181-4836</orcidid><orcidid>https://orcid.org/0000-0002-0517-0952</orcidid></search><sort><creationdate>20240201</creationdate><title>Subtype-Aware Dynamic Unsupervised Domain Adaptation</title><author>Liu, Xiaofeng ; Xing, Fangxu ; You, Jane ; Lu, Jun ; Kuo, C.-C. Jay ; Fakhri, Georges El ; Woo, Jonghye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9a3c58f7bae5cc3fe2b48b1ea99907822bc3b50c1972a23cd0c63f0aa3cb7c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Alignment</topic><topic>Automobiles</topic><topic>Biomedical imaging</topic><topic>Cardiovascular diseases</topic><topic>Centroids</topic><topic>Conditional shift</topic><topic>Costs</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Heart diseases</topic><topic>Knowledge management</topic><topic>label shift</topic><topic>Labels</topic><topic>medical image diagnosis</topic><topic>subtype</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised domain adaptation (UDA)</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xing, Fangxu</creatorcontrib><creatorcontrib>You, Jane</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Kuo, C.-C. Jay</creatorcontrib><creatorcontrib>Fakhri, Georges El</creatorcontrib><creatorcontrib>Woo, Jonghye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiaofeng</au><au>Xing, Fangxu</au><au>You, Jane</au><au>Lu, Jun</au><au>Kuo, C.-C. Jay</au><au>Fakhri, Georges El</au><au>Woo, Jonghye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subtype-Aware Dynamic Unsupervised Domain Adaptation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>2820</spage><epage>2834</epage><pages>2820-2834</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35895653</pmid><doi>10.1109/TNNLS.2022.3192315</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4514-2016</orcidid><orcidid>https://orcid.org/0000-0002-9005-6993</orcidid><orcidid>https://orcid.org/0000-0001-9474-5035</orcidid><orcidid>https://orcid.org/0000-0002-5621-9218</orcidid><orcidid>https://orcid.org/0000-0002-8181-4836</orcidid><orcidid>https://orcid.org/0000-0002-0517-0952</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-02, Vol.35 (2), p.2820-2834
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2923126198
source IEEE Electronic Library (IEL)
subjects Adaptation
Alignment
Automobiles
Biomedical imaging
Cardiovascular diseases
Centroids
Conditional shift
Costs
Diseases
Feature extraction
Heart diseases
Knowledge management
label shift
Labels
medical image diagnosis
subtype
Task analysis
Training
unsupervised domain adaptation (UDA)
title Subtype-Aware Dynamic Unsupervised Domain Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subtype-Aware%20Dynamic%20Unsupervised%20Domain%20Adaptation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Xiaofeng&rft.date=2024-02-01&rft.volume=35&rft.issue=2&rft.spage=2820&rft.epage=2834&rft.pages=2820-2834&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3192315&rft_dat=%3Cproquest_RIE%3E2695291829%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923126198&rft_id=info:pmid/35895653&rft_ieee_id=9843897&rfr_iscdi=true