Numerical study of gas invasion law in fractured reservoirs
Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured rese...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-02, Vol.36 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Sun, Tengfei Li, Yongan Zhang, Yang Liu, Hao |
description | Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations. |
doi_str_mv | 10.1063/5.0189020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2923126101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923126101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-96e2902f735419372bb53583be0b2e202b6266814db22c55526ef30e09d351073</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWyaSZ3eBJiv-g6EXPIdnNypbtbk12K_32prRnT_MGfsx78xi7FjATQPJezUAUGhBO2ERAobOciE73OoeMSIpzdhHjCgCkRpqwh_dx7UNT2pbHYax2vK_5t4286bY2Nn3HW_ubFl4HWw5j8BUPPvqw7ZsQL9lZbdvor45zyr6enz4Xr9ny4-Vt8bjMSizyIdPkMSWqc6nmQsscnVNSFdJ5cOgR0BESFWJeOcRSKYXkawkedCVVyi2n7OZwdxP6n9HHwaz6MXTJ0qBGKZAEiETdHqgy9DEGX5tNaNY27IwAs-_GKHPsJrF3BzaWzWCH9Oc_8B-JkGDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923126101</pqid></control><display><type>article</type><title>Numerical study of gas invasion law in fractured reservoirs</title><source>AIP Journals Complete</source><creator>Sun, Tengfei ; Li, Yongan ; Zhang, Yang ; Liu, Hao</creator><creatorcontrib>Sun, Tengfei ; Li, Yongan ; Zhang, Yang ; Liu, Hao</creatorcontrib><description>Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0189020</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deformation ; Drilling ; Exact solutions ; Finite element method ; Flow characteristics ; Fluid flow ; Fractured reservoirs ; Fractures ; Mathematical models ; Matrices (mathematics) ; Model accuracy ; Reservoirs</subject><ispartof>Physics of fluids (1994), 2024-02, Vol.36 (2)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-96e2902f735419372bb53583be0b2e202b6266814db22c55526ef30e09d351073</cites><orcidid>0009-0009-8347-4845 ; 0009-0009-0730-2347 ; 0000-0001-9019-6980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Tengfei</creatorcontrib><creatorcontrib>Li, Yongan</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Numerical study of gas invasion law in fractured reservoirs</title><title>Physics of fluids (1994)</title><description>Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.</description><subject>Deformation</subject><subject>Drilling</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Fractured reservoirs</subject><subject>Fractures</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Model accuracy</subject><subject>Reservoirs</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWyaSZ3eBJiv-g6EXPIdnNypbtbk12K_32prRnT_MGfsx78xi7FjATQPJezUAUGhBO2ERAobOciE73OoeMSIpzdhHjCgCkRpqwh_dx7UNT2pbHYax2vK_5t4286bY2Nn3HW_ubFl4HWw5j8BUPPvqw7ZsQL9lZbdvor45zyr6enz4Xr9ny4-Vt8bjMSizyIdPkMSWqc6nmQsscnVNSFdJ5cOgR0BESFWJeOcRSKYXkawkedCVVyi2n7OZwdxP6n9HHwaz6MXTJ0qBGKZAEiETdHqgy9DEGX5tNaNY27IwAs-_GKHPsJrF3BzaWzWCH9Oc_8B-JkGDg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Sun, Tengfei</creator><creator>Li, Yongan</creator><creator>Zhang, Yang</creator><creator>Liu, Hao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-8347-4845</orcidid><orcidid>https://orcid.org/0009-0009-0730-2347</orcidid><orcidid>https://orcid.org/0000-0001-9019-6980</orcidid></search><sort><creationdate>202402</creationdate><title>Numerical study of gas invasion law in fractured reservoirs</title><author>Sun, Tengfei ; Li, Yongan ; Zhang, Yang ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-96e2902f735419372bb53583be0b2e202b6266814db22c55526ef30e09d351073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deformation</topic><topic>Drilling</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Fractured reservoirs</topic><topic>Fractures</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Model accuracy</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tengfei</creatorcontrib><creatorcontrib>Li, Yongan</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tengfei</au><au>Li, Yongan</au><au>Zhang, Yang</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of gas invasion law in fractured reservoirs</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0189020</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0009-8347-4845</orcidid><orcidid>https://orcid.org/0009-0009-0730-2347</orcidid><orcidid>https://orcid.org/0000-0001-9019-6980</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-02, Vol.36 (2) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2923126101 |
source | AIP Journals Complete |
subjects | Deformation Drilling Exact solutions Finite element method Flow characteristics Fluid flow Fractured reservoirs Fractures Mathematical models Matrices (mathematics) Model accuracy Reservoirs |
title | Numerical study of gas invasion law in fractured reservoirs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20gas%20invasion%20law%20in%20fractured%20reservoirs&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sun,%20Tengfei&rft.date=2024-02&rft.volume=36&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0189020&rft_dat=%3Cproquest_scita%3E2923126101%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923126101&rft_id=info:pmid/&rfr_iscdi=true |