Numerical study of gas invasion law in fractured reservoirs

Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-02, Vol.36 (2)
Hauptverfasser: Sun, Tengfei, Li, Yongan, Zhang, Yang, Liu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Sun, Tengfei
Li, Yongan
Zhang, Yang
Liu, Hao
description Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.
doi_str_mv 10.1063/5.0189020
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2923126101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923126101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-96e2902f735419372bb53583be0b2e202b6266814db22c55526ef30e09d351073</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWyaSZ3eBJiv-g6EXPIdnNypbtbk12K_32prRnT_MGfsx78xi7FjATQPJezUAUGhBO2ERAobOciE73OoeMSIpzdhHjCgCkRpqwh_dx7UNT2pbHYax2vK_5t4286bY2Nn3HW_ubFl4HWw5j8BUPPvqw7ZsQL9lZbdvor45zyr6enz4Xr9ny4-Vt8bjMSizyIdPkMSWqc6nmQsscnVNSFdJ5cOgR0BESFWJeOcRSKYXkawkedCVVyi2n7OZwdxP6n9HHwaz6MXTJ0qBGKZAEiETdHqgy9DEGX5tNaNY27IwAs-_GKHPsJrF3BzaWzWCH9Oc_8B-JkGDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923126101</pqid></control><display><type>article</type><title>Numerical study of gas invasion law in fractured reservoirs</title><source>AIP Journals Complete</source><creator>Sun, Tengfei ; Li, Yongan ; Zhang, Yang ; Liu, Hao</creator><creatorcontrib>Sun, Tengfei ; Li, Yongan ; Zhang, Yang ; Liu, Hao</creatorcontrib><description>Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0189020</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deformation ; Drilling ; Exact solutions ; Finite element method ; Flow characteristics ; Fluid flow ; Fractured reservoirs ; Fractures ; Mathematical models ; Matrices (mathematics) ; Model accuracy ; Reservoirs</subject><ispartof>Physics of fluids (1994), 2024-02, Vol.36 (2)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-96e2902f735419372bb53583be0b2e202b6266814db22c55526ef30e09d351073</cites><orcidid>0009-0009-8347-4845 ; 0009-0009-0730-2347 ; 0000-0001-9019-6980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Tengfei</creatorcontrib><creatorcontrib>Li, Yongan</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Numerical study of gas invasion law in fractured reservoirs</title><title>Physics of fluids (1994)</title><description>Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.</description><subject>Deformation</subject><subject>Drilling</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Fractured reservoirs</subject><subject>Fractures</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Model accuracy</subject><subject>Reservoirs</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWyaSZ3eBJiv-g6EXPIdnNypbtbk12K_32prRnT_MGfsx78xi7FjATQPJezUAUGhBO2ERAobOciE73OoeMSIpzdhHjCgCkRpqwh_dx7UNT2pbHYax2vK_5t4286bY2Nn3HW_ubFl4HWw5j8BUPPvqw7ZsQL9lZbdvor45zyr6enz4Xr9ny4-Vt8bjMSizyIdPkMSWqc6nmQsscnVNSFdJ5cOgR0BESFWJeOcRSKYXkawkedCVVyi2n7OZwdxP6n9HHwaz6MXTJ0qBGKZAEiETdHqgy9DEGX5tNaNY27IwAs-_GKHPsJrF3BzaWzWCH9Oc_8B-JkGDg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Sun, Tengfei</creator><creator>Li, Yongan</creator><creator>Zhang, Yang</creator><creator>Liu, Hao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-8347-4845</orcidid><orcidid>https://orcid.org/0009-0009-0730-2347</orcidid><orcidid>https://orcid.org/0000-0001-9019-6980</orcidid></search><sort><creationdate>202402</creationdate><title>Numerical study of gas invasion law in fractured reservoirs</title><author>Sun, Tengfei ; Li, Yongan ; Zhang, Yang ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-96e2902f735419372bb53583be0b2e202b6266814db22c55526ef30e09d351073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deformation</topic><topic>Drilling</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Fractured reservoirs</topic><topic>Fractures</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Model accuracy</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tengfei</creatorcontrib><creatorcontrib>Li, Yongan</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tengfei</au><au>Li, Yongan</au><au>Zhang, Yang</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of gas invasion law in fractured reservoirs</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Gas invasion during the drilling process in fractured reservoirs poses challenges, affecting drilling efficiency and increasing costs. Therefore, it is crucial to effectively and accurately describe the flow characteristics of subsurface fluids. Addressing the issue of gas invasion in fractured reservoirs, this study considers the influence of matrix deformation and fracture aperture variation on fluid flow and establishes a mathematical model for coupled flow and solid deformation in fractured reservoirs. The numerical formulation of the mathematical model is derived using the finite element method. To better represent real reservoir conditions, discrete fractures are created using MATLAB, and numerical solutions are obtained using the commercial software COMSOL Multiphysics. The accuracy of the model is verified through a comparison between numerical and analytical solutions. This paper first explores the characteristics of fluid flow within a single fracture and rock deformation when encountering a fracture during drilling. It then compares the predictive capability of the coupled model with that of the uncoupled model in estimating gas invasion. Finally, the primary factors influencing gas invasion in fractured reservoirs are analyzed from the perspectives of rock matrix, fractures, and drilling operations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0189020</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0009-8347-4845</orcidid><orcidid>https://orcid.org/0009-0009-0730-2347</orcidid><orcidid>https://orcid.org/0000-0001-9019-6980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-02, Vol.36 (2)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2923126101
source AIP Journals Complete
subjects Deformation
Drilling
Exact solutions
Finite element method
Flow characteristics
Fluid flow
Fractured reservoirs
Fractures
Mathematical models
Matrices (mathematics)
Model accuracy
Reservoirs
title Numerical study of gas invasion law in fractured reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20gas%20invasion%20law%20in%20fractured%20reservoirs&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sun,%20Tengfei&rft.date=2024-02&rft.volume=36&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0189020&rft_dat=%3Cproquest_scita%3E2923126101%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923126101&rft_id=info:pmid/&rfr_iscdi=true