Gated Fusion Adaptive Graph Neural Network for Urban Road Traffic Flow Prediction

Accurate prediction of traffic flow plays an important role in maintaining traffic order and traffic safety, which is a key task in the application of intelligent transportation systems (ITS). However, the urban road network has complex dynamic spatial correlation and nonlinear temporal correlation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2024-02, Vol.56 (1), p.9, Article 9
Hauptverfasser: Xiong, Liyan, Yuan, Xinhua, Hu, Zhuyi, Huang, Xiaohui, Huang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 9
container_title Neural processing letters
container_volume 56
creator Xiong, Liyan
Yuan, Xinhua
Hu, Zhuyi
Huang, Xiaohui
Huang, Peng
description Accurate prediction of traffic flow plays an important role in maintaining traffic order and traffic safety, which is a key task in the application of intelligent transportation systems (ITS). However, the urban road network has complex dynamic spatial correlation and nonlinear temporal correlation, and achieving accurate traffic flow prediction is a highly challenging task. Traditional methods use sensors deployed on roads to construct the spatial structure of the road network and capture spatial information by graph convolution. However, they ignore that the spatial correlation between nodes is dynamically changing, and using a fixed adjacency matrix cannot reflect the real road spatial structure. To overcome these limitations, this paper proposes a new spatial-temporal deep learning model: gated fusion adaptive graph neural network (GFAGNN). GFAGNN first extracts long-term dependencies on raw data through stacking expansion causal convolution, Then the spatial features of the dynamics are learned by adaptive graph attention network and adaptive graph convolutional network respectively, Finally the fused information is passed through a lightweight channel attention to extract temporal features. The experimental results on two public data sets show that our model can effectively capture the spatiotemporal correlation in traffic flow prediction. Compared with GWNET-conv model on METR-LA dataset, the three indexes in the 60-minute task prediction improved by 2.27%,2.06% and 2.13%, respectively.
doi_str_mv 10.1007/s11063-024-11479-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922691613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922691613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-80a0ad6612e695753130e1ba0708a3872da1e2db8f971ad2b9949e948adcd8093</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19WcpGuayzHcFIZfbOBdOG1S7ZxNTVqH_95oBb3y6j0X7_MeeAg5BXYOjMmLAMAykTCeJgCpVAnfIyOYSJFIKR73_9yH5CiEDWMR42xE7hfYWUPnfahdQ6cG265-t3ThsX2mN7b3uI3R7Zx_oZXzdO0LbOiDQ0NXHquqLul863b0zltTl10cOSYHFW6DPfnJMVnPL1ezq2R5u7ieTZdJKSDtkpwhQ5NlwG2mJnIiQDALBTLJchS55AbBclPklZKAhhdKpcqqNEdTmpwpMSZnw27r3VtvQ6c3rvdNfKm54jxTkIGILT60Su9C8LbSra9f0X9oYPpLnR7U6ahOf6vTPEJigEIsN0_W_07_Q30CaRxwGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922691613</pqid></control><display><type>article</type><title>Gated Fusion Adaptive Graph Neural Network for Urban Road Traffic Flow Prediction</title><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><creator>Xiong, Liyan ; Yuan, Xinhua ; Hu, Zhuyi ; Huang, Xiaohui ; Huang, Peng</creator><creatorcontrib>Xiong, Liyan ; Yuan, Xinhua ; Hu, Zhuyi ; Huang, Xiaohui ; Huang, Peng</creatorcontrib><description>Accurate prediction of traffic flow plays an important role in maintaining traffic order and traffic safety, which is a key task in the application of intelligent transportation systems (ITS). However, the urban road network has complex dynamic spatial correlation and nonlinear temporal correlation, and achieving accurate traffic flow prediction is a highly challenging task. Traditional methods use sensors deployed on roads to construct the spatial structure of the road network and capture spatial information by graph convolution. However, they ignore that the spatial correlation between nodes is dynamically changing, and using a fixed adjacency matrix cannot reflect the real road spatial structure. To overcome these limitations, this paper proposes a new spatial-temporal deep learning model: gated fusion adaptive graph neural network (GFAGNN). GFAGNN first extracts long-term dependencies on raw data through stacking expansion causal convolution, Then the spatial features of the dynamics are learned by adaptive graph attention network and adaptive graph convolutional network respectively, Finally the fused information is passed through a lightweight channel attention to extract temporal features. The experimental results on two public data sets show that our model can effectively capture the spatiotemporal correlation in traffic flow prediction. Compared with GWNET-conv model on METR-LA dataset, the three indexes in the 60-minute task prediction improved by 2.27%,2.06% and 2.13%, respectively.</description><identifier>ISSN: 1573-773X</identifier><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-024-11479-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Computer Science ; Convolution ; Correlation ; Deep learning ; Experiments ; Forecasting ; Graph neural networks ; Intelligent transportation systems ; Machine learning ; Neural networks ; Road construction ; Roads &amp; highways ; Sensors ; Spatial data ; Time series ; Traffic flow ; Transportation networks ; Wavelet transforms</subject><ispartof>Neural processing letters, 2024-02, Vol.56 (1), p.9, Article 9</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-80a0ad6612e695753130e1ba0708a3872da1e2db8f971ad2b9949e948adcd8093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-024-11479-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11063-024-11479-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Xiong, Liyan</creatorcontrib><creatorcontrib>Yuan, Xinhua</creatorcontrib><creatorcontrib>Hu, Zhuyi</creatorcontrib><creatorcontrib>Huang, Xiaohui</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><title>Gated Fusion Adaptive Graph Neural Network for Urban Road Traffic Flow Prediction</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Accurate prediction of traffic flow plays an important role in maintaining traffic order and traffic safety, which is a key task in the application of intelligent transportation systems (ITS). However, the urban road network has complex dynamic spatial correlation and nonlinear temporal correlation, and achieving accurate traffic flow prediction is a highly challenging task. Traditional methods use sensors deployed on roads to construct the spatial structure of the road network and capture spatial information by graph convolution. However, they ignore that the spatial correlation between nodes is dynamically changing, and using a fixed adjacency matrix cannot reflect the real road spatial structure. To overcome these limitations, this paper proposes a new spatial-temporal deep learning model: gated fusion adaptive graph neural network (GFAGNN). GFAGNN first extracts long-term dependencies on raw data through stacking expansion causal convolution, Then the spatial features of the dynamics are learned by adaptive graph attention network and adaptive graph convolutional network respectively, Finally the fused information is passed through a lightweight channel attention to extract temporal features. The experimental results on two public data sets show that our model can effectively capture the spatiotemporal correlation in traffic flow prediction. Compared with GWNET-conv model on METR-LA dataset, the three indexes in the 60-minute task prediction improved by 2.27%,2.06% and 2.13%, respectively.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Experiments</subject><subject>Forecasting</subject><subject>Graph neural networks</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Road construction</subject><subject>Roads &amp; highways</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Time series</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><subject>Wavelet transforms</subject><issn>1573-773X</issn><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19WcpGuayzHcFIZfbOBdOG1S7ZxNTVqH_95oBb3y6j0X7_MeeAg5BXYOjMmLAMAykTCeJgCpVAnfIyOYSJFIKR73_9yH5CiEDWMR42xE7hfYWUPnfahdQ6cG265-t3ThsX2mN7b3uI3R7Zx_oZXzdO0LbOiDQ0NXHquqLul863b0zltTl10cOSYHFW6DPfnJMVnPL1ezq2R5u7ieTZdJKSDtkpwhQ5NlwG2mJnIiQDALBTLJchS55AbBclPklZKAhhdKpcqqNEdTmpwpMSZnw27r3VtvQ6c3rvdNfKm54jxTkIGILT60Su9C8LbSra9f0X9oYPpLnR7U6ahOf6vTPEJigEIsN0_W_07_Q30CaRxwGg</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Xiong, Liyan</creator><creator>Yuan, Xinhua</creator><creator>Hu, Zhuyi</creator><creator>Huang, Xiaohui</creator><creator>Huang, Peng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240206</creationdate><title>Gated Fusion Adaptive Graph Neural Network for Urban Road Traffic Flow Prediction</title><author>Xiong, Liyan ; Yuan, Xinhua ; Hu, Zhuyi ; Huang, Xiaohui ; Huang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-80a0ad6612e695753130e1ba0708a3872da1e2db8f971ad2b9949e948adcd8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Experiments</topic><topic>Forecasting</topic><topic>Graph neural networks</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Road construction</topic><topic>Roads &amp; highways</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Time series</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Liyan</creatorcontrib><creatorcontrib>Yuan, Xinhua</creatorcontrib><creatorcontrib>Hu, Zhuyi</creatorcontrib><creatorcontrib>Huang, Xiaohui</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Liyan</au><au>Yuan, Xinhua</au><au>Hu, Zhuyi</au><au>Huang, Xiaohui</au><au>Huang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gated Fusion Adaptive Graph Neural Network for Urban Road Traffic Flow Prediction</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2024-02-06</date><risdate>2024</risdate><volume>56</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>1573-773X</issn><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Accurate prediction of traffic flow plays an important role in maintaining traffic order and traffic safety, which is a key task in the application of intelligent transportation systems (ITS). However, the urban road network has complex dynamic spatial correlation and nonlinear temporal correlation, and achieving accurate traffic flow prediction is a highly challenging task. Traditional methods use sensors deployed on roads to construct the spatial structure of the road network and capture spatial information by graph convolution. However, they ignore that the spatial correlation between nodes is dynamically changing, and using a fixed adjacency matrix cannot reflect the real road spatial structure. To overcome these limitations, this paper proposes a new spatial-temporal deep learning model: gated fusion adaptive graph neural network (GFAGNN). GFAGNN first extracts long-term dependencies on raw data through stacking expansion causal convolution, Then the spatial features of the dynamics are learned by adaptive graph attention network and adaptive graph convolutional network respectively, Finally the fused information is passed through a lightweight channel attention to extract temporal features. The experimental results on two public data sets show that our model can effectively capture the spatiotemporal correlation in traffic flow prediction. Compared with GWNET-conv model on METR-LA dataset, the three indexes in the 60-minute task prediction improved by 2.27%,2.06% and 2.13%, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-024-11479-2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-773X
ispartof Neural processing letters, 2024-02, Vol.56 (1), p.9, Article 9
issn 1573-773X
1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2922691613
source SpringerNature Journals; Springer Nature OA Free Journals
subjects Artificial Intelligence
Artificial neural networks
Complex Systems
Computational Intelligence
Computer Science
Convolution
Correlation
Deep learning
Experiments
Forecasting
Graph neural networks
Intelligent transportation systems
Machine learning
Neural networks
Road construction
Roads & highways
Sensors
Spatial data
Time series
Traffic flow
Transportation networks
Wavelet transforms
title Gated Fusion Adaptive Graph Neural Network for Urban Road Traffic Flow Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gated%20Fusion%20Adaptive%20Graph%20Neural%20Network%20for%20Urban%20Road%20Traffic%20Flow%20Prediction&rft.jtitle=Neural%20processing%20letters&rft.au=Xiong,%20Liyan&rft.date=2024-02-06&rft.volume=56&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=1573-773X&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-024-11479-2&rft_dat=%3Cproquest_cross%3E2922691613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922691613&rft_id=info:pmid/&rfr_iscdi=true