Statistical Inference for Generalized Integer Autoregressive Processes

A popular and flexible time series model for counts is the generalized integer autoregressive process of order \(p\), GINAR(\(p\)). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Kaur, Pashmeen, Craigmile, Peter F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kaur, Pashmeen
Craigmile, Peter F
description A popular and flexible time series model for counts is the generalized integer autoregressive process of order \(p\), GINAR(\(p\)). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includes the commonly used INAR(\(p\)) process, defined with binomial thinning and Poisson innovations. GINAR processes can be used in a variety of settings, including modeling time series with low counts, and allow for more general mean-variance relationships, capturing both over- or under-dispersion. While there are many thinning operators and innovation processes given in the literature, less focus has been spent on comparing statistical inference and forecasting procedures over different choices of GINAR process. We provide an extensive study of exact and approximate inference and forecasting methods that can be applied to a wide class of GINAR(\(p\)) processes with general thinning and innovation parameters. We discuss the challenges of exact estimation when \(p\) is larger. We summarize and extend asymptotic results for estimators of process parameters, and present simulations to compare small sample performance, highlighting how different methods compare. We illustrate this methodology by fitting GINAR processes to a disease surveillance series.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922677547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922677547</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226775473</originalsourceid><addsrcrecordid>eNqNjb0KwjAYRYMgWLTvEHAu1KS1Oor4twm6l1BvS0pJ9PtSB5_eDD6A07lwLpyJSJTWq2xTKDUTKXOf57laV6osdSKOt2CC5WAbM8iLa0FwDWTrSZ7gQGawHzyiCehAcjcGT-gIzPYNeSXfxAleiGlrBkb641wsj4f7_pw9yb9GcKh7P5KLqlZbFetVWVT6v9cXFMA8Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922677547</pqid></control><display><type>article</type><title>Statistical Inference for Generalized Integer Autoregressive Processes</title><source>Free E- Journals</source><creator>Kaur, Pashmeen ; Craigmile, Peter F</creator><creatorcontrib>Kaur, Pashmeen ; Craigmile, Peter F</creatorcontrib><description>A popular and flexible time series model for counts is the generalized integer autoregressive process of order \(p\), GINAR(\(p\)). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includes the commonly used INAR(\(p\)) process, defined with binomial thinning and Poisson innovations. GINAR processes can be used in a variety of settings, including modeling time series with low counts, and allow for more general mean-variance relationships, capturing both over- or under-dispersion. While there are many thinning operators and innovation processes given in the literature, less focus has been spent on comparing statistical inference and forecasting procedures over different choices of GINAR process. We provide an extensive study of exact and approximate inference and forecasting methods that can be applied to a wide class of GINAR(\(p\)) processes with general thinning and innovation parameters. We discuss the challenges of exact estimation when \(p\) is larger. We summarize and extend asymptotic results for estimators of process parameters, and present simulations to compare small sample performance, highlighting how different methods compare. We illustrate this methodology by fitting GINAR processes to a disease surveillance series.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoregressive processes ; Forecasting ; Innovations ; Integers ; Markov processes ; Mathematical models ; Operators ; Process parameters ; Statistical inference ; Thinning ; Time series</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kaur, Pashmeen</creatorcontrib><creatorcontrib>Craigmile, Peter F</creatorcontrib><title>Statistical Inference for Generalized Integer Autoregressive Processes</title><title>arXiv.org</title><description>A popular and flexible time series model for counts is the generalized integer autoregressive process of order \(p\), GINAR(\(p\)). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includes the commonly used INAR(\(p\)) process, defined with binomial thinning and Poisson innovations. GINAR processes can be used in a variety of settings, including modeling time series with low counts, and allow for more general mean-variance relationships, capturing both over- or under-dispersion. While there are many thinning operators and innovation processes given in the literature, less focus has been spent on comparing statistical inference and forecasting procedures over different choices of GINAR process. We provide an extensive study of exact and approximate inference and forecasting methods that can be applied to a wide class of GINAR(\(p\)) processes with general thinning and innovation parameters. We discuss the challenges of exact estimation when \(p\) is larger. We summarize and extend asymptotic results for estimators of process parameters, and present simulations to compare small sample performance, highlighting how different methods compare. We illustrate this methodology by fitting GINAR processes to a disease surveillance series.</description><subject>Autoregressive processes</subject><subject>Forecasting</subject><subject>Innovations</subject><subject>Integers</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Process parameters</subject><subject>Statistical inference</subject><subject>Thinning</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjb0KwjAYRYMgWLTvEHAu1KS1Oor4twm6l1BvS0pJ9PtSB5_eDD6A07lwLpyJSJTWq2xTKDUTKXOf57laV6osdSKOt2CC5WAbM8iLa0FwDWTrSZ7gQGawHzyiCehAcjcGT-gIzPYNeSXfxAleiGlrBkb641wsj4f7_pw9yb9GcKh7P5KLqlZbFetVWVT6v9cXFMA8Ew</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Kaur, Pashmeen</creator><creator>Craigmile, Peter F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240205</creationdate><title>Statistical Inference for Generalized Integer Autoregressive Processes</title><author>Kaur, Pashmeen ; Craigmile, Peter F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226775473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive processes</topic><topic>Forecasting</topic><topic>Innovations</topic><topic>Integers</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Process parameters</topic><topic>Statistical inference</topic><topic>Thinning</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Pashmeen</creatorcontrib><creatorcontrib>Craigmile, Peter F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Pashmeen</au><au>Craigmile, Peter F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Statistical Inference for Generalized Integer Autoregressive Processes</atitle><jtitle>arXiv.org</jtitle><date>2024-02-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A popular and flexible time series model for counts is the generalized integer autoregressive process of order \(p\), GINAR(\(p\)). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includes the commonly used INAR(\(p\)) process, defined with binomial thinning and Poisson innovations. GINAR processes can be used in a variety of settings, including modeling time series with low counts, and allow for more general mean-variance relationships, capturing both over- or under-dispersion. While there are many thinning operators and innovation processes given in the literature, less focus has been spent on comparing statistical inference and forecasting procedures over different choices of GINAR process. We provide an extensive study of exact and approximate inference and forecasting methods that can be applied to a wide class of GINAR(\(p\)) processes with general thinning and innovation parameters. We discuss the challenges of exact estimation when \(p\) is larger. We summarize and extend asymptotic results for estimators of process parameters, and present simulations to compare small sample performance, highlighting how different methods compare. We illustrate this methodology by fitting GINAR processes to a disease surveillance series.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2922677547
source Free E- Journals
subjects Autoregressive processes
Forecasting
Innovations
Integers
Markov processes
Mathematical models
Operators
Process parameters
Statistical inference
Thinning
Time series
title Statistical Inference for Generalized Integer Autoregressive Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Statistical%20Inference%20for%20Generalized%20Integer%20Autoregressive%20Processes&rft.jtitle=arXiv.org&rft.au=Kaur,%20Pashmeen&rft.date=2024-02-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922677547%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922677547&rft_id=info:pmid/&rfr_iscdi=true