A theta operator for the group \(\mathrm{GSp}_4\)

We construct a differential operator on sheaves of \(p\)-adic modular forms defined over the locus of \(p\)-rank \(\ge 1\) of the Siegel threefold, by applying a revisited version of the approach that Sean Howe recently introduced in his paper "A unipotent circle action on \(p\)-adic modular fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
1. Verfasser: Fiore, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fiore, Leonardo
description We construct a differential operator on sheaves of \(p\)-adic modular forms defined over the locus of \(p\)-rank \(\ge 1\) of the Siegel threefold, by applying a revisited version of the approach that Sean Howe recently introduced in his paper "A unipotent circle action on \(p\)-adic modular forms" (2020, Trans. Am. Math. Soc.) to construct the theta operator in the elliptic case.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922676662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922676662</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226766623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdFQoyUgtSVTIL0gtSizJL1JIA2KgkEJ6UX5pgUKMRkxuYklGUW61e3BBbbxJjCYPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRoBLTIzMzMyJk4VAFU4MtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922676662</pqid></control><display><type>article</type><title>A theta operator for the group \(\mathrm{GSp}_4\)</title><source>Free E- Journals</source><creator>Fiore, Leonardo</creator><creatorcontrib>Fiore, Leonardo</creatorcontrib><description>We construct a differential operator on sheaves of \(p\)-adic modular forms defined over the locus of \(p\)-rank \(\ge 1\) of the Siegel threefold, by applying a revisited version of the approach that Sean Howe recently introduced in his paper "A unipotent circle action on \(p\)-adic modular forms" (2020, Trans. Am. Math. Soc.) to construct the theta operator in the elliptic case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Differential equations ; Operators (mathematics) ; Sheaves</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fiore, Leonardo</creatorcontrib><title>A theta operator for the group \(\mathrm{GSp}_4\)</title><title>arXiv.org</title><description>We construct a differential operator on sheaves of \(p\)-adic modular forms defined over the locus of \(p\)-rank \(\ge 1\) of the Siegel threefold, by applying a revisited version of the approach that Sean Howe recently introduced in his paper "A unipotent circle action on \(p\)-adic modular forms" (2020, Trans. Am. Math. Soc.) to construct the theta operator in the elliptic case.</description><subject>Analytic functions</subject><subject>Differential equations</subject><subject>Operators (mathematics)</subject><subject>Sheaves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdFQoyUgtSVTIL0gtSizJL1JIA2KgkEJ6UX5pgUKMRkxuYklGUW61e3BBbbxJjCYPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRoBLTIzMzMyJk4VAFU4MtE</recordid><startdate>20240204</startdate><enddate>20240204</enddate><creator>Fiore, Leonardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240204</creationdate><title>A theta operator for the group \(\mathrm{GSp}_4\)</title><author>Fiore, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226766623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>Differential equations</topic><topic>Operators (mathematics)</topic><topic>Sheaves</topic><toplevel>online_resources</toplevel><creatorcontrib>Fiore, Leonardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiore, Leonardo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A theta operator for the group \(\mathrm{GSp}_4\)</atitle><jtitle>arXiv.org</jtitle><date>2024-02-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We construct a differential operator on sheaves of \(p\)-adic modular forms defined over the locus of \(p\)-rank \(\ge 1\) of the Siegel threefold, by applying a revisited version of the approach that Sean Howe recently introduced in his paper "A unipotent circle action on \(p\)-adic modular forms" (2020, Trans. Am. Math. Soc.) to construct the theta operator in the elliptic case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2922676662
source Free E- Journals
subjects Analytic functions
Differential equations
Operators (mathematics)
Sheaves
title A theta operator for the group \(\mathrm{GSp}_4\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20theta%20operator%20for%20the%20group%20%5C(%5Cmathrm%7BGSp%7D_4%5C)&rft.jtitle=arXiv.org&rft.au=Fiore,%20Leonardo&rft.date=2024-02-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922676662%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922676662&rft_id=info:pmid/&rfr_iscdi=true