MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles

The automatic identification of offensive language such as hate speech is important to keep discussions civil in online communities. Identifying hate speech in multimodal content is a particularly challenging task because offensiveness can be manifested in either words or images or a juxtaposition o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Ganguly, Amrita, Al Nahian Bin Emran, Sadiya Sayara Chowdhury Puspo, Md Nishat Raihan, Goswami, Dhiman, Zampieri, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ganguly, Amrita
Al Nahian Bin Emran
Sadiya Sayara Chowdhury Puspo
Md Nishat Raihan
Goswami, Dhiman
Zampieri, Marcos
description The automatic identification of offensive language such as hate speech is important to keep discussions civil in online communities. Identifying hate speech in multimodal content is a particularly challenging task because offensiveness can be manifested in either words or images or a juxtaposition of the two. This paper presents the MasonPerplexity submission for the Shared Task on Multimodal Hate Speech Event Detection at CASE 2024 at EACL 2024. The task is divided into two sub-tasks: sub-task A focuses on the identification of hate speech and sub-task B focuses on the identification of targets in text-embedded images during political events. We use an XLM-roBERTa-large model for sub-task A and an ensemble approach combining XLM-roBERTa-base, BERTweet-large, and BERT-base for sub-task B. Our approach obtained 0.8347 F1-score in sub-task A and 0.6741 F1-score in sub-task B ranking 3rd on both sub-tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922667483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922667483</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226674833</originalsourceid><addsrcrecordid>eNqNysEOwUAQgOGNRELwDpM4S2q2Wlyp9NJEos6yGFXZ7tbOVkg8PAcHbk7_4f9aootSjkfTELEjBsyXIAgwinEykV3xzBRbsyZXa7qX_gHKQ9ZoX1b2qDSkyhNsaqLDGZIbGQ9L8nTwpTWAAYbzH6HMEXLlCvpmWy5NAblThk_WVeQgMUzVXhP3RfukNNPg054YrpJ8kY5qZ68Nsd9dbOPMe-1whhhFcTiV8j_1AhTnTis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922667483</pqid></control><display><type>article</type><title>MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles</title><source>Freely Accessible Journals</source><creator>Ganguly, Amrita ; Al Nahian Bin Emran ; Sadiya Sayara Chowdhury Puspo ; Md Nishat Raihan ; Goswami, Dhiman ; Zampieri, Marcos</creator><creatorcontrib>Ganguly, Amrita ; Al Nahian Bin Emran ; Sadiya Sayara Chowdhury Puspo ; Md Nishat Raihan ; Goswami, Dhiman ; Zampieri, Marcos</creatorcontrib><description>The automatic identification of offensive language such as hate speech is important to keep discussions civil in online communities. Identifying hate speech in multimodal content is a particularly challenging task because offensiveness can be manifested in either words or images or a juxtaposition of the two. This paper presents the MasonPerplexity submission for the Shared Task on Multimodal Hate Speech Event Detection at CASE 2024 at EACL 2024. The task is divided into two sub-tasks: sub-task A focuses on the identification of hate speech and sub-task B focuses on the identification of targets in text-embedded images during political events. We use an XLM-roBERTa-large model for sub-task A and an ensemble approach combining XLM-roBERTa-base, BERTweet-large, and BERT-base for sub-task B. Our approach obtained 0.8347 F1-score in sub-task A and 0.6741 F1-score in sub-task B ranking 3rd on both sub-tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Target detection ; Target recognition</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ganguly, Amrita</creatorcontrib><creatorcontrib>Al Nahian Bin Emran</creatorcontrib><creatorcontrib>Sadiya Sayara Chowdhury Puspo</creatorcontrib><creatorcontrib>Md Nishat Raihan</creatorcontrib><creatorcontrib>Goswami, Dhiman</creatorcontrib><creatorcontrib>Zampieri, Marcos</creatorcontrib><title>MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles</title><title>arXiv.org</title><description>The automatic identification of offensive language such as hate speech is important to keep discussions civil in online communities. Identifying hate speech in multimodal content is a particularly challenging task because offensiveness can be manifested in either words or images or a juxtaposition of the two. This paper presents the MasonPerplexity submission for the Shared Task on Multimodal Hate Speech Event Detection at CASE 2024 at EACL 2024. The task is divided into two sub-tasks: sub-task A focuses on the identification of hate speech and sub-task B focuses on the identification of targets in text-embedded images during political events. We use an XLM-roBERTa-large model for sub-task A and an ensemble approach combining XLM-roBERTa-base, BERTweet-large, and BERT-base for sub-task B. Our approach obtained 0.8347 F1-score in sub-task A and 0.6741 F1-score in sub-task B ranking 3rd on both sub-tasks.</description><subject>Target detection</subject><subject>Target recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEOwUAQgOGNRELwDpM4S2q2Wlyp9NJEos6yGFXZ7tbOVkg8PAcHbk7_4f9aootSjkfTELEjBsyXIAgwinEykV3xzBRbsyZXa7qX_gHKQ9ZoX1b2qDSkyhNsaqLDGZIbGQ9L8nTwpTWAAYbzH6HMEXLlCvpmWy5NAblThk_WVeQgMUzVXhP3RfukNNPg054YrpJ8kY5qZ68Nsd9dbOPMe-1whhhFcTiV8j_1AhTnTis</recordid><startdate>20240218</startdate><enddate>20240218</enddate><creator>Ganguly, Amrita</creator><creator>Al Nahian Bin Emran</creator><creator>Sadiya Sayara Chowdhury Puspo</creator><creator>Md Nishat Raihan</creator><creator>Goswami, Dhiman</creator><creator>Zampieri, Marcos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240218</creationdate><title>MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles</title><author>Ganguly, Amrita ; Al Nahian Bin Emran ; Sadiya Sayara Chowdhury Puspo ; Md Nishat Raihan ; Goswami, Dhiman ; Zampieri, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226674833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Target detection</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Amrita</creatorcontrib><creatorcontrib>Al Nahian Bin Emran</creatorcontrib><creatorcontrib>Sadiya Sayara Chowdhury Puspo</creatorcontrib><creatorcontrib>Md Nishat Raihan</creatorcontrib><creatorcontrib>Goswami, Dhiman</creatorcontrib><creatorcontrib>Zampieri, Marcos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguly, Amrita</au><au>Al Nahian Bin Emran</au><au>Sadiya Sayara Chowdhury Puspo</au><au>Md Nishat Raihan</au><au>Goswami, Dhiman</au><au>Zampieri, Marcos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles</atitle><jtitle>arXiv.org</jtitle><date>2024-02-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The automatic identification of offensive language such as hate speech is important to keep discussions civil in online communities. Identifying hate speech in multimodal content is a particularly challenging task because offensiveness can be manifested in either words or images or a juxtaposition of the two. This paper presents the MasonPerplexity submission for the Shared Task on Multimodal Hate Speech Event Detection at CASE 2024 at EACL 2024. The task is divided into two sub-tasks: sub-task A focuses on the identification of hate speech and sub-task B focuses on the identification of targets in text-embedded images during political events. We use an XLM-roBERTa-large model for sub-task A and an ensemble approach combining XLM-roBERTa-base, BERTweet-large, and BERT-base for sub-task B. Our approach obtained 0.8347 F1-score in sub-task A and 0.6741 F1-score in sub-task B ranking 3rd on both sub-tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2922667483
source Freely Accessible Journals
subjects Target detection
Target recognition
title MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MasonPerplexity%20at%20Multimodal%20Hate%20Speech%20Event%20Detection%202024:%20Hate%20Speech%20and%20Target%20Detection%20Using%20Transformer%20Ensembles&rft.jtitle=arXiv.org&rft.au=Ganguly,%20Amrita&rft.date=2024-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922667483%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922667483&rft_id=info:pmid/&rfr_iscdi=true