Query-decision Regression between Shortest Path and Minimum Steiner Tree

Considering a graph with unknown weights, can we find the shortest path for a pair of nodes if we know the minimal Steiner trees associated with some subset of nodes? That is, with respect to a fixed latent decision-making system (e.g., a weighted graph), we seek to solve one optimization problem (e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Tong, Guangmo, Zhao, Peng, Samizadeh, Mina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tong, Guangmo
Zhao, Peng
Samizadeh, Mina
description Considering a graph with unknown weights, can we find the shortest path for a pair of nodes if we know the minimal Steiner trees associated with some subset of nodes? That is, with respect to a fixed latent decision-making system (e.g., a weighted graph), we seek to solve one optimization problem (e.g., the shortest path problem) by leveraging information associated with another optimization problem (e.g., the minimal Steiner tree problem). In this paper, we study such a prototype problem called \textit{query-decision regression with task shifts}, focusing on the shortest path problem and the minimum Steiner tree problem. We provide theoretical insights regarding the design of realizable hypothesis spaces for building scoring models, and present two principled learning frameworks. Our experimental studies show that such problems can be solved to a decent extent with statistical significance.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922660841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922660841</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226608413</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3uNBaGO-o2ToKN0Gle7G85UjO1PwQvX0SPUCr78A534QFKEQc5QnijIXW9pxzzFaYpiJgxdGTeUctXaSVWsGJbobsF8_kXkQKyk4bR9bBoXEdNKqFvVRy8AOUjqQiA5UhWrDptblbCn87Z8vdttoU0cPopx_vda-9UaOqcY2YZTxPYvFf9QFd1zwb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922660841</pqid></control><display><type>article</type><title>Query-decision Regression between Shortest Path and Minimum Steiner Tree</title><source>Free E- Journals</source><creator>Tong, Guangmo ; Zhao, Peng ; Samizadeh, Mina</creator><creatorcontrib>Tong, Guangmo ; Zhao, Peng ; Samizadeh, Mina</creatorcontrib><description>Considering a graph with unknown weights, can we find the shortest path for a pair of nodes if we know the minimal Steiner trees associated with some subset of nodes? That is, with respect to a fixed latent decision-making system (e.g., a weighted graph), we seek to solve one optimization problem (e.g., the shortest path problem) by leveraging information associated with another optimization problem (e.g., the minimal Steiner tree problem). In this paper, we study such a prototype problem called \textit{query-decision regression with task shifts}, focusing on the shortest path problem and the minimum Steiner tree problem. We provide theoretical insights regarding the design of realizable hypothesis spaces for building scoring models, and present two principled learning frameworks. Our experimental studies show that such problems can be solved to a decent extent with statistical significance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nodes ; Optimization ; Scoring models ; Shortest-path problems ; Statistical analysis</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tong, Guangmo</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Samizadeh, Mina</creatorcontrib><title>Query-decision Regression between Shortest Path and Minimum Steiner Tree</title><title>arXiv.org</title><description>Considering a graph with unknown weights, can we find the shortest path for a pair of nodes if we know the minimal Steiner trees associated with some subset of nodes? That is, with respect to a fixed latent decision-making system (e.g., a weighted graph), we seek to solve one optimization problem (e.g., the shortest path problem) by leveraging information associated with another optimization problem (e.g., the minimal Steiner tree problem). In this paper, we study such a prototype problem called \textit{query-decision regression with task shifts}, focusing on the shortest path problem and the minimum Steiner tree problem. We provide theoretical insights regarding the design of realizable hypothesis spaces for building scoring models, and present two principled learning frameworks. Our experimental studies show that such problems can be solved to a decent extent with statistical significance.</description><subject>Nodes</subject><subject>Optimization</subject><subject>Scoring models</subject><subject>Shortest-path problems</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KgkAURocgSMp3uNBaGO-o2ToKN0Gle7G85UjO1PwQvX0SPUCr78A534QFKEQc5QnijIXW9pxzzFaYpiJgxdGTeUctXaSVWsGJbobsF8_kXkQKyk4bR9bBoXEdNKqFvVRy8AOUjqQiA5UhWrDptblbCn87Z8vdttoU0cPopx_vda-9UaOqcY2YZTxPYvFf9QFd1zwb</recordid><startdate>20240203</startdate><enddate>20240203</enddate><creator>Tong, Guangmo</creator><creator>Zhao, Peng</creator><creator>Samizadeh, Mina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240203</creationdate><title>Query-decision Regression between Shortest Path and Minimum Steiner Tree</title><author>Tong, Guangmo ; Zhao, Peng ; Samizadeh, Mina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226608413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Nodes</topic><topic>Optimization</topic><topic>Scoring models</topic><topic>Shortest-path problems</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tong, Guangmo</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Samizadeh, Mina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Guangmo</au><au>Zhao, Peng</au><au>Samizadeh, Mina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Query-decision Regression between Shortest Path and Minimum Steiner Tree</atitle><jtitle>arXiv.org</jtitle><date>2024-02-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Considering a graph with unknown weights, can we find the shortest path for a pair of nodes if we know the minimal Steiner trees associated with some subset of nodes? That is, with respect to a fixed latent decision-making system (e.g., a weighted graph), we seek to solve one optimization problem (e.g., the shortest path problem) by leveraging information associated with another optimization problem (e.g., the minimal Steiner tree problem). In this paper, we study such a prototype problem called \textit{query-decision regression with task shifts}, focusing on the shortest path problem and the minimum Steiner tree problem. We provide theoretical insights regarding the design of realizable hypothesis spaces for building scoring models, and present two principled learning frameworks. Our experimental studies show that such problems can be solved to a decent extent with statistical significance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2922660841
source Free E- Journals
subjects Nodes
Optimization
Scoring models
Shortest-path problems
Statistical analysis
title Query-decision Regression between Shortest Path and Minimum Steiner Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Query-decision%20Regression%20between%20Shortest%20Path%20and%20Minimum%20Steiner%20Tree&rft.jtitle=arXiv.org&rft.au=Tong,%20Guangmo&rft.date=2024-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922660841%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922660841&rft_id=info:pmid/&rfr_iscdi=true