CIDAR: Culturally Relevant Instruction Dataset For Arabic
Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alyafeai, Zaid Almubarak, Khalid Ahmed, Ashraf Alnuhait, Deema Alshahrani, Saied Gubran A Q Abdulrahman Ahmed, Gamil Gawah, Qais Saleh, Zead Ghaleb, Mustafa Yousef, Ali Al-Shaibani, Maged S |
description | Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias significantly impacts the linguistic structures of non-English languages such as Arabic, which has a distinct grammar reflective of the diverse cultures across the Arab region. This paper addresses this limitation by introducing CIDAR: https://hf.co/datasets/arbml/CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers. CIDAR contains 10,000 instruction and output pairs that represent the Arab region. We discuss the cultural relevance of CIDAR via the analysis and comparison to other models fine-tuned on other datasets. Our experiments show that CIDAR can help enrich research efforts in aligning LLMs with the Arabic culture. All the code is available at https://github.com/ARBML/CIDAR. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922660552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922660552</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226605523</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC_HFROtWWotdi3uJJUJLSPTlRfDvdfADnO5w7oJlIOWuOO4BViyPcRZCgD6AUjJjZd01VX_idXKU0Dj35r119mU88c5HwjTSFDxvDJloibcBeYXmNo0btrwbF23-65pt2_O1vhQPDM9kIw1zSOi_NEAJoLVQCuR_1wcdTjWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922660552</pqid></control><display><type>article</type><title>CIDAR: Culturally Relevant Instruction Dataset For Arabic</title><source>Free E- Journals</source><creator>Alyafeai, Zaid ; Almubarak, Khalid ; Ahmed, Ashraf ; Alnuhait, Deema ; Alshahrani, Saied ; Gubran A Q Abdulrahman ; Ahmed, Gamil ; Gawah, Qais ; Saleh, Zead ; Ghaleb, Mustafa ; Yousef, Ali ; Al-Shaibani, Maged S</creator><creatorcontrib>Alyafeai, Zaid ; Almubarak, Khalid ; Ahmed, Ashraf ; Alnuhait, Deema ; Alshahrani, Saied ; Gubran A Q Abdulrahman ; Ahmed, Gamil ; Gawah, Qais ; Saleh, Zead ; Ghaleb, Mustafa ; Yousef, Ali ; Al-Shaibani, Maged S</creatorcontrib><description>Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias significantly impacts the linguistic structures of non-English languages such as Arabic, which has a distinct grammar reflective of the diverse cultures across the Arab region. This paper addresses this limitation by introducing CIDAR: https://hf.co/datasets/arbml/CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers. CIDAR contains 10,000 instruction and output pairs that represent the Arab region. We discuss the cultural relevance of CIDAR via the analysis and comparison to other models fine-tuned on other datasets. Our experiments show that CIDAR can help enrich research efforts in aligning LLMs with the Arabic culture. All the code is available at https://github.com/ARBML/CIDAR.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Culture ; Datasets ; English language ; Large language models ; Non-English languages ; Tuning</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Alyafeai, Zaid</creatorcontrib><creatorcontrib>Almubarak, Khalid</creatorcontrib><creatorcontrib>Ahmed, Ashraf</creatorcontrib><creatorcontrib>Alnuhait, Deema</creatorcontrib><creatorcontrib>Alshahrani, Saied</creatorcontrib><creatorcontrib>Gubran A Q Abdulrahman</creatorcontrib><creatorcontrib>Ahmed, Gamil</creatorcontrib><creatorcontrib>Gawah, Qais</creatorcontrib><creatorcontrib>Saleh, Zead</creatorcontrib><creatorcontrib>Ghaleb, Mustafa</creatorcontrib><creatorcontrib>Yousef, Ali</creatorcontrib><creatorcontrib>Al-Shaibani, Maged S</creatorcontrib><title>CIDAR: Culturally Relevant Instruction Dataset For Arabic</title><title>arXiv.org</title><description>Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias significantly impacts the linguistic structures of non-English languages such as Arabic, which has a distinct grammar reflective of the diverse cultures across the Arab region. This paper addresses this limitation by introducing CIDAR: https://hf.co/datasets/arbml/CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers. CIDAR contains 10,000 instruction and output pairs that represent the Arab region. We discuss the cultural relevance of CIDAR via the analysis and comparison to other models fine-tuned on other datasets. Our experiments show that CIDAR can help enrich research efforts in aligning LLMs with the Arabic culture. All the code is available at https://github.com/ARBML/CIDAR.</description><subject>Bias</subject><subject>Culture</subject><subject>Datasets</subject><subject>English language</subject><subject>Large language models</subject><subject>Non-English languages</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC_HFROtWWotdi3uJJUJLSPTlRfDvdfADnO5w7oJlIOWuOO4BViyPcRZCgD6AUjJjZd01VX_idXKU0Dj35r119mU88c5HwjTSFDxvDJloibcBeYXmNo0btrwbF23-65pt2_O1vhQPDM9kIw1zSOi_NEAJoLVQCuR_1wcdTjWs</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Alyafeai, Zaid</creator><creator>Almubarak, Khalid</creator><creator>Ahmed, Ashraf</creator><creator>Alnuhait, Deema</creator><creator>Alshahrani, Saied</creator><creator>Gubran A Q Abdulrahman</creator><creator>Ahmed, Gamil</creator><creator>Gawah, Qais</creator><creator>Saleh, Zead</creator><creator>Ghaleb, Mustafa</creator><creator>Yousef, Ali</creator><creator>Al-Shaibani, Maged S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240205</creationdate><title>CIDAR: Culturally Relevant Instruction Dataset For Arabic</title><author>Alyafeai, Zaid ; Almubarak, Khalid ; Ahmed, Ashraf ; Alnuhait, Deema ; Alshahrani, Saied ; Gubran A Q Abdulrahman ; Ahmed, Gamil ; Gawah, Qais ; Saleh, Zead ; Ghaleb, Mustafa ; Yousef, Ali ; Al-Shaibani, Maged S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226605523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Culture</topic><topic>Datasets</topic><topic>English language</topic><topic>Large language models</topic><topic>Non-English languages</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Alyafeai, Zaid</creatorcontrib><creatorcontrib>Almubarak, Khalid</creatorcontrib><creatorcontrib>Ahmed, Ashraf</creatorcontrib><creatorcontrib>Alnuhait, Deema</creatorcontrib><creatorcontrib>Alshahrani, Saied</creatorcontrib><creatorcontrib>Gubran A Q Abdulrahman</creatorcontrib><creatorcontrib>Ahmed, Gamil</creatorcontrib><creatorcontrib>Gawah, Qais</creatorcontrib><creatorcontrib>Saleh, Zead</creatorcontrib><creatorcontrib>Ghaleb, Mustafa</creatorcontrib><creatorcontrib>Yousef, Ali</creatorcontrib><creatorcontrib>Al-Shaibani, Maged S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alyafeai, Zaid</au><au>Almubarak, Khalid</au><au>Ahmed, Ashraf</au><au>Alnuhait, Deema</au><au>Alshahrani, Saied</au><au>Gubran A Q Abdulrahman</au><au>Ahmed, Gamil</au><au>Gawah, Qais</au><au>Saleh, Zead</au><au>Ghaleb, Mustafa</au><au>Yousef, Ali</au><au>Al-Shaibani, Maged S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CIDAR: Culturally Relevant Instruction Dataset For Arabic</atitle><jtitle>arXiv.org</jtitle><date>2024-02-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias significantly impacts the linguistic structures of non-English languages such as Arabic, which has a distinct grammar reflective of the diverse cultures across the Arab region. This paper addresses this limitation by introducing CIDAR: https://hf.co/datasets/arbml/CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers. CIDAR contains 10,000 instruction and output pairs that represent the Arab region. We discuss the cultural relevance of CIDAR via the analysis and comparison to other models fine-tuned on other datasets. Our experiments show that CIDAR can help enrich research efforts in aligning LLMs with the Arabic culture. All the code is available at https://github.com/ARBML/CIDAR.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2922660552 |
source | Free E- Journals |
subjects | Bias Culture Datasets English language Large language models Non-English languages Tuning |
title | CIDAR: Culturally Relevant Instruction Dataset For Arabic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CIDAR:%20Culturally%20Relevant%20Instruction%20Dataset%20For%20Arabic&rft.jtitle=arXiv.org&rft.au=Alyafeai,%20Zaid&rft.date=2024-02-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922660552%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922660552&rft_id=info:pmid/&rfr_iscdi=true |