Manufacture and performance test of banana ripe detection tool using laser light backscattering imaging
Postharvest technology for the detection of banana quality and ripeness is developing rapidly, especially non-destructive technology (NDT). However, some NDT technologies require long detection times and expensive instruments. One of the optical-based methods, namely laser light backscattering imagi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2957 |
creator | Kuala, Seri Intan Juliastuti, Endang Dwivany, Fenny Martha |
description | Postharvest technology for the detection of banana quality and ripeness is developing rapidly, especially non-destructive technology (NDT). However, some NDT technologies require long detection times and expensive instruments. One of the optical-based methods, namely laser light backscattering imaging (LLBI), has recently become popular because it is fast, reliable, effective, economical, and real-time. The purpose of this study was to design and test the LLBI image acquisition system, which has good accuracy in predicting the ripeness of Cavendish bananas. A system has been designed with dimensions of 80 cm×80 cm×80 cm, an angled iron frame equipped with a bridge jack, a 650 nm 5 mW laser, a camera with a focal length of 18–105 mm, and a laptop equipped with digiCamControl software and Fiji ImageJ. The system built has been tested through statistical calculations and obtained >62% of LLBI parameters have a strong correlation with the maturity level. Correlation can build a model with a suitability of 99.44% in predicting the maturity level. From this model, we also obtained 99.42% of the LLBI parameters that affect the maturity level. In addition, direct performance measurement was carried out with the results of 87.63% of the modeling results by real conditions. All test results illustrate that the LLBI system can predict the ripeness of Cavendish bananas with good accuracy. |
doi_str_mv | 10.1063/5.0184012 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2922640203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922640203</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-f98a8ce74918f20174c247600aeeb32def9bf6489ce3144844e1d33015138e863</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMouK4e_AYBb0LXmSRt06Ms_oMVLwreSjad1K7dpibpwW9vl5U5vMP8mHnvMXaNsEIo5F2-AtQKUJywBeY5ZmWBxSlbAFQqE0p-nrOLGHcAoipLvWDtqxkmZ2yaAnEzNHyk4HzYm8ESTxQT945vzTAPD91IvKFENnV-4Mn7nk-xG1rem0iB9137lWbYfkdrUqJwWHV70856yc6c6SNd_euSfTw-vK-fs83b08v6fpONKGXKXKWNtlSqCrUTgKWyQpUFgCHaStGQq7auULqyJFEprRRhIyVgjlKTLuSS3RzvjsH_TLP_euenMMwva1EJUSgQIGfq9khF2yVzSFOPYXYafmuE-lBkndf_Rco_15Flgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2922640203</pqid></control><display><type>conference_proceeding</type><title>Manufacture and performance test of banana ripe detection tool using laser light backscattering imaging</title><source>AIP Journals Complete</source><creator>Kuala, Seri Intan ; Juliastuti, Endang ; Dwivany, Fenny Martha</creator><contributor>Putri, Ezi Masdia ; Atmoko, Bayu Andri ; Kurniawan, Hakim ; Wulandari ; Widodo, Slamet ; Hudaya, Mohammad Firdaus ; Purba, Riris Delima ; Harsonowati, Wiwiek</contributor><creatorcontrib>Kuala, Seri Intan ; Juliastuti, Endang ; Dwivany, Fenny Martha ; Putri, Ezi Masdia ; Atmoko, Bayu Andri ; Kurniawan, Hakim ; Wulandari ; Widodo, Slamet ; Hudaya, Mohammad Firdaus ; Purba, Riris Delima ; Harsonowati, Wiwiek</creatorcontrib><description>Postharvest technology for the detection of banana quality and ripeness is developing rapidly, especially non-destructive technology (NDT). However, some NDT technologies require long detection times and expensive instruments. One of the optical-based methods, namely laser light backscattering imaging (LLBI), has recently become popular because it is fast, reliable, effective, economical, and real-time. The purpose of this study was to design and test the LLBI image acquisition system, which has good accuracy in predicting the ripeness of Cavendish bananas. A system has been designed with dimensions of 80 cm×80 cm×80 cm, an angled iron frame equipped with a bridge jack, a 650 nm 5 mW laser, a camera with a focal length of 18–105 mm, and a laptop equipped with digiCamControl software and Fiji ImageJ. The system built has been tested through statistical calculations and obtained >62% of LLBI parameters have a strong correlation with the maturity level. Correlation can build a model with a suitability of 99.44% in predicting the maturity level. From this model, we also obtained 99.42% of the LLBI parameters that affect the maturity level. In addition, direct performance measurement was carried out with the results of 87.63% of the modeling results by real conditions. All test results illustrate that the LLBI system can predict the ripeness of Cavendish bananas with good accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0184012</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Backscattering ; Bananas ; Image acquisition ; Lasers ; Mathematical models ; Nondestructive testing ; Parameters ; Performance measurement ; Performance tests</subject><ispartof>AIP conference proceedings, 2024, Vol.2957 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0184012$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Putri, Ezi Masdia</contributor><contributor>Atmoko, Bayu Andri</contributor><contributor>Kurniawan, Hakim</contributor><contributor>Wulandari</contributor><contributor>Widodo, Slamet</contributor><contributor>Hudaya, Mohammad Firdaus</contributor><contributor>Purba, Riris Delima</contributor><contributor>Harsonowati, Wiwiek</contributor><creatorcontrib>Kuala, Seri Intan</creatorcontrib><creatorcontrib>Juliastuti, Endang</creatorcontrib><creatorcontrib>Dwivany, Fenny Martha</creatorcontrib><title>Manufacture and performance test of banana ripe detection tool using laser light backscattering imaging</title><title>AIP conference proceedings</title><description>Postharvest technology for the detection of banana quality and ripeness is developing rapidly, especially non-destructive technology (NDT). However, some NDT technologies require long detection times and expensive instruments. One of the optical-based methods, namely laser light backscattering imaging (LLBI), has recently become popular because it is fast, reliable, effective, economical, and real-time. The purpose of this study was to design and test the LLBI image acquisition system, which has good accuracy in predicting the ripeness of Cavendish bananas. A system has been designed with dimensions of 80 cm×80 cm×80 cm, an angled iron frame equipped with a bridge jack, a 650 nm 5 mW laser, a camera with a focal length of 18–105 mm, and a laptop equipped with digiCamControl software and Fiji ImageJ. The system built has been tested through statistical calculations and obtained >62% of LLBI parameters have a strong correlation with the maturity level. Correlation can build a model with a suitability of 99.44% in predicting the maturity level. From this model, we also obtained 99.42% of the LLBI parameters that affect the maturity level. In addition, direct performance measurement was carried out with the results of 87.63% of the modeling results by real conditions. All test results illustrate that the LLBI system can predict the ripeness of Cavendish bananas with good accuracy.</description><subject>Accuracy</subject><subject>Backscattering</subject><subject>Bananas</subject><subject>Image acquisition</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Nondestructive testing</subject><subject>Parameters</subject><subject>Performance measurement</subject><subject>Performance tests</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LxDAQxYMouK4e_AYBb0LXmSRt06Ms_oMVLwreSjad1K7dpibpwW9vl5U5vMP8mHnvMXaNsEIo5F2-AtQKUJywBeY5ZmWBxSlbAFQqE0p-nrOLGHcAoipLvWDtqxkmZ2yaAnEzNHyk4HzYm8ESTxQT945vzTAPD91IvKFENnV-4Mn7nk-xG1rem0iB9137lWbYfkdrUqJwWHV70856yc6c6SNd_euSfTw-vK-fs83b08v6fpONKGXKXKWNtlSqCrUTgKWyQpUFgCHaStGQq7auULqyJFEprRRhIyVgjlKTLuSS3RzvjsH_TLP_euenMMwva1EJUSgQIGfq9khF2yVzSFOPYXYafmuE-lBkndf_Rco_15Flgg</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Kuala, Seri Intan</creator><creator>Juliastuti, Endang</creator><creator>Dwivany, Fenny Martha</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240206</creationdate><title>Manufacture and performance test of banana ripe detection tool using laser light backscattering imaging</title><author>Kuala, Seri Intan ; Juliastuti, Endang ; Dwivany, Fenny Martha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-f98a8ce74918f20174c247600aeeb32def9bf6489ce3144844e1d33015138e863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Backscattering</topic><topic>Bananas</topic><topic>Image acquisition</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Nondestructive testing</topic><topic>Parameters</topic><topic>Performance measurement</topic><topic>Performance tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuala, Seri Intan</creatorcontrib><creatorcontrib>Juliastuti, Endang</creatorcontrib><creatorcontrib>Dwivany, Fenny Martha</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuala, Seri Intan</au><au>Juliastuti, Endang</au><au>Dwivany, Fenny Martha</au><au>Putri, Ezi Masdia</au><au>Atmoko, Bayu Andri</au><au>Kurniawan, Hakim</au><au>Wulandari</au><au>Widodo, Slamet</au><au>Hudaya, Mohammad Firdaus</au><au>Purba, Riris Delima</au><au>Harsonowati, Wiwiek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Manufacture and performance test of banana ripe detection tool using laser light backscattering imaging</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-06</date><risdate>2024</risdate><volume>2957</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Postharvest technology for the detection of banana quality and ripeness is developing rapidly, especially non-destructive technology (NDT). However, some NDT technologies require long detection times and expensive instruments. One of the optical-based methods, namely laser light backscattering imaging (LLBI), has recently become popular because it is fast, reliable, effective, economical, and real-time. The purpose of this study was to design and test the LLBI image acquisition system, which has good accuracy in predicting the ripeness of Cavendish bananas. A system has been designed with dimensions of 80 cm×80 cm×80 cm, an angled iron frame equipped with a bridge jack, a 650 nm 5 mW laser, a camera with a focal length of 18–105 mm, and a laptop equipped with digiCamControl software and Fiji ImageJ. The system built has been tested through statistical calculations and obtained >62% of LLBI parameters have a strong correlation with the maturity level. Correlation can build a model with a suitability of 99.44% in predicting the maturity level. From this model, we also obtained 99.42% of the LLBI parameters that affect the maturity level. In addition, direct performance measurement was carried out with the results of 87.63% of the modeling results by real conditions. All test results illustrate that the LLBI system can predict the ripeness of Cavendish bananas with good accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184012</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2957 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2922640203 |
source | AIP Journals Complete |
subjects | Accuracy Backscattering Bananas Image acquisition Lasers Mathematical models Nondestructive testing Parameters Performance measurement Performance tests |
title | Manufacture and performance test of banana ripe detection tool using laser light backscattering imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Manufacture%20and%20performance%20test%20of%20banana%20ripe%20detection%20tool%20using%20laser%20light%20backscattering%20imaging&rft.btitle=AIP%20conference%20proceedings&rft.au=Kuala,%20Seri%20Intan&rft.date=2024-02-06&rft.volume=2957&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0184012&rft_dat=%3Cproquest_scita%3E2922640203%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922640203&rft_id=info:pmid/&rfr_iscdi=true |