Confinement enhanced viscosity vs shear thinning in lubricated ice friction

The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-02, Vol.160 (5)
Hauptverfasser: Baran, Łukasz, MacDowell, Luis G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Baran, Łukasz
MacDowell, Luis G.
description The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness and illustrates an interesting interplay between confinement enhanced viscosities and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.
doi_str_mv 10.1063/5.0180337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922638903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922638903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5644fe8dda6fd32adabd2d031e118160aa8d4e24a90a5cf53f3a1f75fc9fa1793</originalsourceid><addsrcrecordid>eNp90MtKAzEYhuEgiq3VhTcgA25UmJrTZJKlFE9YcKPrIc3BpsxkNMkUevemtLpw4SoEHj5-XgDOEZwiyMhtNYWIQ0LqAzBGkIuyZgIegjGEGJWCQTYCJzGuIISoxvQYjAgnFDHBx-Bl1nvrvOmMT4XxS-mV0cXaRdVHlzbFOhZxaWQo0tJ57_xH4XzRDovglExZOmUKmz_J9f4UHFnZRnO2fyfg_eH-bfZUzl8fn2d381IRSlJZMUqt4VpLZjXBUsuFxhoSZBDiiEEpuaYGUymgrJStiCUS2bqySliJakEm4Gq3-xn6r8HE1HT5XtO20pt-iA0WuKKcCIQzvfxDV_0QfL5uqzAjXORuE3C9Uyr0MQZjm8_gOhk2DYLNtnBTNfvC2V7sF4dFZ_Sv_Emawc0OROWS3Hb5Z-0bU-eC0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922638903</pqid></control><display><type>article</type><title>Confinement enhanced viscosity vs shear thinning in lubricated ice friction</title><source>AIP Journals Complete</source><creator>Baran, Łukasz ; MacDowell, Luis G.</creator><creatorcontrib>Baran, Łukasz ; MacDowell, Luis G.</creatorcontrib><description>The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness and illustrates an interesting interplay between confinement enhanced viscosities and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0180337</identifier><identifier>PMID: 38341698</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coefficient of friction ; Confinement ; Fluid dynamics ; Kinetic friction ; Physical simulation ; Shear rate ; Shear thinning (liquids) ; Sliding ; Substrates ; Thickness ; Viscosity</subject><ispartof>The Journal of chemical physics, 2024-02, Vol.160 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-5644fe8dda6fd32adabd2d031e118160aa8d4e24a90a5cf53f3a1f75fc9fa1793</cites><orcidid>0000-0003-1777-1998 ; 0000-0003-1900-1241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0180337$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38341698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baran, Łukasz</creatorcontrib><creatorcontrib>MacDowell, Luis G.</creatorcontrib><title>Confinement enhanced viscosity vs shear thinning in lubricated ice friction</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness and illustrates an interesting interplay between confinement enhanced viscosities and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.</description><subject>Coefficient of friction</subject><subject>Confinement</subject><subject>Fluid dynamics</subject><subject>Kinetic friction</subject><subject>Physical simulation</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Sliding</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Viscosity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEYhuEgiq3VhTcgA25UmJrTZJKlFE9YcKPrIc3BpsxkNMkUevemtLpw4SoEHj5-XgDOEZwiyMhtNYWIQ0LqAzBGkIuyZgIegjGEGJWCQTYCJzGuIISoxvQYjAgnFDHBx-Bl1nvrvOmMT4XxS-mV0cXaRdVHlzbFOhZxaWQo0tJ57_xH4XzRDovglExZOmUKmz_J9f4UHFnZRnO2fyfg_eH-bfZUzl8fn2d381IRSlJZMUqt4VpLZjXBUsuFxhoSZBDiiEEpuaYGUymgrJStiCUS2bqySliJakEm4Gq3-xn6r8HE1HT5XtO20pt-iA0WuKKcCIQzvfxDV_0QfL5uqzAjXORuE3C9Uyr0MQZjm8_gOhk2DYLNtnBTNfvC2V7sF4dFZ_Sv_Emawc0OROWS3Hb5Z-0bU-eC0w</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Baran, Łukasz</creator><creator>MacDowell, Luis G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1777-1998</orcidid><orcidid>https://orcid.org/0000-0003-1900-1241</orcidid></search><sort><creationdate>20240207</creationdate><title>Confinement enhanced viscosity vs shear thinning in lubricated ice friction</title><author>Baran, Łukasz ; MacDowell, Luis G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5644fe8dda6fd32adabd2d031e118160aa8d4e24a90a5cf53f3a1f75fc9fa1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coefficient of friction</topic><topic>Confinement</topic><topic>Fluid dynamics</topic><topic>Kinetic friction</topic><topic>Physical simulation</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Sliding</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baran, Łukasz</creatorcontrib><creatorcontrib>MacDowell, Luis G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baran, Łukasz</au><au>MacDowell, Luis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement enhanced viscosity vs shear thinning in lubricated ice friction</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>160</volume><issue>5</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness and illustrates an interesting interplay between confinement enhanced viscosities and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38341698</pmid><doi>10.1063/5.0180337</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1777-1998</orcidid><orcidid>https://orcid.org/0000-0003-1900-1241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-02, Vol.160 (5)
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2922638903
source AIP Journals Complete
subjects Coefficient of friction
Confinement
Fluid dynamics
Kinetic friction
Physical simulation
Shear rate
Shear thinning (liquids)
Sliding
Substrates
Thickness
Viscosity
title Confinement enhanced viscosity vs shear thinning in lubricated ice friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement%20enhanced%20viscosity%20vs%20shear%20thinning%20in%20lubricated%20ice%20friction&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Baran,%20%C5%81ukasz&rft.date=2024-02-07&rft.volume=160&rft.issue=5&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0180337&rft_dat=%3Cproquest_cross%3E2922638903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922638903&rft_id=info:pmid/38341698&rfr_iscdi=true