A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition
We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are inter...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2024-02, Vol.19 (2), p.C02016 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | C02016 |
container_title | Journal of instrumentation |
container_volume | 19 |
creator | Smolyanskiy, P. Bacak, M. Bergmann, B. Broulím, P. Burian, P. Čelko, T. Garvey, D. Gunthoti, K. Infantes, F.G. Mánek, P. Manna, A. Mráz, F. Mucciola, R. Pospíšil, S. Sitarz, M. Urban, O. Vykydal, Z. Wender, S.A. |
description | We characterize a novel instrument designed for radiation field decomposition and particle
trajectory reconstruction for application in harsh radiation environments. The device consists of
two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These
detectors are interleaved with a set of neutron converters:
6
LiF for thermal neutrons,
polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton
filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence
technique together with pattern recognition allows improved separation of charged and neutral
particles, their discrimination against
γ
-rays and assessment of the overall directionality
of the fast neutron field. The instrument's charged particle tracking and separation capabilities
were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super
Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing
temporal and spatial coincidence assignment methodology, we determine the relative amount of
coincident detections as a function of the impact angle, present the device's impact angle
resolving power (both in coincidence and anticoicidence channels). The detector response to
neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron
Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured
tracks were assigned to their corresponding neutron energy by application of the time of flight
technique. We present the achieved neutron detection efficiency as a function of neutron kinetic
energy and demonstrate how the ratio of events found below the different converters can be used to
assess the hardness of the neutron spectrum. As an application, we determine the neutron content
within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with
protons of 160 MeV. |
doi_str_mv | 10.1088/1748-0221/19/02/C02016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2922548600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922548600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4b88e19857f440cf3eb5536a027db8726a0a2424288569b68a461bc0d7b2a7363</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoXJOC5Nknz1eOy-AWCl_Uc0jRds7ZNTbrq_ntTKupN5vCGmffeDA-AS4yuMZIyx4LKDBGCc1zmiORrRBDmR2Dxszj-05-Csxh3CLGSUbQAZgXHD5-1-mAD3LjODu6zgHHU5hU2PkDXDcG_2xqaFx22CQcdRmdaC8eQOK7fQt3XMOja6dH5HjbOtjWsrfHd4KObZufgpNFttBffuATPtzeb9X32-HT3sF49ZqZgYsxoJaXFpWSioRSZprAVYwXXiIi6koKkThOaSkrGy4pLTTmuDKpFRbQoeLEEV7Nvevltb-Oodn4f-nRSkZIQRiVHKLH4zDLBxxhso4bgOh0OCiM1BaqmrNSUlcJlQjUHmoRkFjo__Dr_I_oC7XB3Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922548600</pqid></control><display><type>article</type><title>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Smolyanskiy, P. ; Bacak, M. ; Bergmann, B. ; Broulím, P. ; Burian, P. ; Čelko, T. ; Garvey, D. ; Gunthoti, K. ; Infantes, F.G. ; Mánek, P. ; Manna, A. ; Mráz, F. ; Mucciola, R. ; Pospíšil, S. ; Sitarz, M. ; Urban, O. ; Vykydal, Z. ; Wender, S.A.</creator><creatorcontrib>Smolyanskiy, P. ; Bacak, M. ; Bergmann, B. ; Broulím, P. ; Burian, P. ; Čelko, T. ; Garvey, D. ; Gunthoti, K. ; Infantes, F.G. ; Mánek, P. ; Manna, A. ; Mráz, F. ; Mucciola, R. ; Pospíšil, S. ; Sitarz, M. ; Urban, O. ; Vykydal, Z. ; Wender, S.A.</creatorcontrib><description>We characterize a novel instrument designed for radiation field decomposition and particle
trajectory reconstruction for application in harsh radiation environments. The device consists of
two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These
detectors are interleaved with a set of neutron converters:
6
LiF for thermal neutrons,
polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton
filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence
technique together with pattern recognition allows improved separation of charged and neutral
particles, their discrimination against
γ
-rays and assessment of the overall directionality
of the fast neutron field. The instrument's charged particle tracking and separation capabilities
were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super
Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing
temporal and spatial coincidence assignment methodology, we determine the relative amount of
coincident detections as a function of the impact angle, present the device's impact angle
resolving power (both in coincidence and anticoicidence channels). The detector response to
neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron
Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured
tracks were assigned to their corresponding neutron energy by application of the time of flight
technique. We present the achieved neutron detection efficiency as a function of neutron kinetic
energy and demonstrate how the ratio of events found below the different converters can be used to
assess the hardness of the neutron spectrum. As an application, we determine the neutron content
within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with
protons of 160 MeV.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/19/02/C02016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Charged particles ; Decomposition ; Fast neutrons ; Gamma rays ; Neutron detectors (cold, thermal, fast neutrons) ; Neutrons ; Particle identification methods ; Particle tracking ; Particle tracking detectors (Solid-state detectors) ; Pattern recognition ; Pions ; Polyethylenes ; Protons ; Radiation ; Separation ; Thermal neutrons</subject><ispartof>Journal of instrumentation, 2024-02, Vol.19 (2), p.C02016</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-4b88e19857f440cf3eb5536a027db8726a0a2424288569b68a461bc0d7b2a7363</cites><orcidid>0009-0003-3077-3223 ; 0000-0003-4306-0209 ; 0000-0001-5424-9096 ; 0000-0002-7858-5120 ; 0000-0003-3038-7691 ; 0000-0003-2609-6429 ; 0000-0002-6959-544X ; 0000-0002-8076-5614 ; 0000-0001-9501-0997 ; 0000-0001-9869-3340 ; 0000-0002-2446-5115 ; 0000-0003-1605-7311 ; 0000-0002-1122-1218 ; 0009-0005-6454-5354 ; 0000-0001-6907-7901 ; 0000-0001-8811-8334 ; 0000-0003-2329-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/19/02/C02016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Smolyanskiy, P.</creatorcontrib><creatorcontrib>Bacak, M.</creatorcontrib><creatorcontrib>Bergmann, B.</creatorcontrib><creatorcontrib>Broulím, P.</creatorcontrib><creatorcontrib>Burian, P.</creatorcontrib><creatorcontrib>Čelko, T.</creatorcontrib><creatorcontrib>Garvey, D.</creatorcontrib><creatorcontrib>Gunthoti, K.</creatorcontrib><creatorcontrib>Infantes, F.G.</creatorcontrib><creatorcontrib>Mánek, P.</creatorcontrib><creatorcontrib>Manna, A.</creatorcontrib><creatorcontrib>Mráz, F.</creatorcontrib><creatorcontrib>Mucciola, R.</creatorcontrib><creatorcontrib>Pospíšil, S.</creatorcontrib><creatorcontrib>Sitarz, M.</creatorcontrib><creatorcontrib>Urban, O.</creatorcontrib><creatorcontrib>Vykydal, Z.</creatorcontrib><creatorcontrib>Wender, S.A.</creatorcontrib><title>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>We characterize a novel instrument designed for radiation field decomposition and particle
trajectory reconstruction for application in harsh radiation environments. The device consists of
two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These
detectors are interleaved with a set of neutron converters:
6
LiF for thermal neutrons,
polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton
filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence
technique together with pattern recognition allows improved separation of charged and neutral
particles, their discrimination against
γ
-rays and assessment of the overall directionality
of the fast neutron field. The instrument's charged particle tracking and separation capabilities
were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super
Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing
temporal and spatial coincidence assignment methodology, we determine the relative amount of
coincident detections as a function of the impact angle, present the device's impact angle
resolving power (both in coincidence and anticoicidence channels). The detector response to
neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron
Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured
tracks were assigned to their corresponding neutron energy by application of the time of flight
technique. We present the achieved neutron detection efficiency as a function of neutron kinetic
energy and demonstrate how the ratio of events found below the different converters can be used to
assess the hardness of the neutron spectrum. As an application, we determine the neutron content
within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with
protons of 160 MeV.</description><subject>Charged particles</subject><subject>Decomposition</subject><subject>Fast neutrons</subject><subject>Gamma rays</subject><subject>Neutron detectors (cold, thermal, fast neutrons)</subject><subject>Neutrons</subject><subject>Particle identification methods</subject><subject>Particle tracking</subject><subject>Particle tracking detectors (Solid-state detectors)</subject><subject>Pattern recognition</subject><subject>Pions</subject><subject>Polyethylenes</subject><subject>Protons</subject><subject>Radiation</subject><subject>Separation</subject><subject>Thermal neutrons</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNqFUE1LxDAQDaLguvoXJOC5Nknz1eOy-AWCl_Uc0jRds7ZNTbrq_ntTKupN5vCGmffeDA-AS4yuMZIyx4LKDBGCc1zmiORrRBDmR2Dxszj-05-Csxh3CLGSUbQAZgXHD5-1-mAD3LjODu6zgHHU5hU2PkDXDcG_2xqaFx22CQcdRmdaC8eQOK7fQt3XMOja6dH5HjbOtjWsrfHd4KObZufgpNFttBffuATPtzeb9X32-HT3sF49ZqZgYsxoJaXFpWSioRSZprAVYwXXiIi6koKkThOaSkrGy4pLTTmuDKpFRbQoeLEEV7Nvevltb-Oodn4f-nRSkZIQRiVHKLH4zDLBxxhso4bgOh0OCiM1BaqmrNSUlcJlQjUHmoRkFjo__Dr_I_oC7XB3Pg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Smolyanskiy, P.</creator><creator>Bacak, M.</creator><creator>Bergmann, B.</creator><creator>Broulím, P.</creator><creator>Burian, P.</creator><creator>Čelko, T.</creator><creator>Garvey, D.</creator><creator>Gunthoti, K.</creator><creator>Infantes, F.G.</creator><creator>Mánek, P.</creator><creator>Manna, A.</creator><creator>Mráz, F.</creator><creator>Mucciola, R.</creator><creator>Pospíšil, S.</creator><creator>Sitarz, M.</creator><creator>Urban, O.</creator><creator>Vykydal, Z.</creator><creator>Wender, S.A.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3077-3223</orcidid><orcidid>https://orcid.org/0000-0003-4306-0209</orcidid><orcidid>https://orcid.org/0000-0001-5424-9096</orcidid><orcidid>https://orcid.org/0000-0002-7858-5120</orcidid><orcidid>https://orcid.org/0000-0003-3038-7691</orcidid><orcidid>https://orcid.org/0000-0003-2609-6429</orcidid><orcidid>https://orcid.org/0000-0002-6959-544X</orcidid><orcidid>https://orcid.org/0000-0002-8076-5614</orcidid><orcidid>https://orcid.org/0000-0001-9501-0997</orcidid><orcidid>https://orcid.org/0000-0001-9869-3340</orcidid><orcidid>https://orcid.org/0000-0002-2446-5115</orcidid><orcidid>https://orcid.org/0000-0003-1605-7311</orcidid><orcidid>https://orcid.org/0000-0002-1122-1218</orcidid><orcidid>https://orcid.org/0009-0005-6454-5354</orcidid><orcidid>https://orcid.org/0000-0001-6907-7901</orcidid><orcidid>https://orcid.org/0000-0001-8811-8334</orcidid><orcidid>https://orcid.org/0000-0003-2329-0672</orcidid></search><sort><creationdate>20240201</creationdate><title>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</title><author>Smolyanskiy, P. ; Bacak, M. ; Bergmann, B. ; Broulím, P. ; Burian, P. ; Čelko, T. ; Garvey, D. ; Gunthoti, K. ; Infantes, F.G. ; Mánek, P. ; Manna, A. ; Mráz, F. ; Mucciola, R. ; Pospíšil, S. ; Sitarz, M. ; Urban, O. ; Vykydal, Z. ; Wender, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4b88e19857f440cf3eb5536a027db8726a0a2424288569b68a461bc0d7b2a7363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charged particles</topic><topic>Decomposition</topic><topic>Fast neutrons</topic><topic>Gamma rays</topic><topic>Neutron detectors (cold, thermal, fast neutrons)</topic><topic>Neutrons</topic><topic>Particle identification methods</topic><topic>Particle tracking</topic><topic>Particle tracking detectors (Solid-state detectors)</topic><topic>Pattern recognition</topic><topic>Pions</topic><topic>Polyethylenes</topic><topic>Protons</topic><topic>Radiation</topic><topic>Separation</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolyanskiy, P.</creatorcontrib><creatorcontrib>Bacak, M.</creatorcontrib><creatorcontrib>Bergmann, B.</creatorcontrib><creatorcontrib>Broulím, P.</creatorcontrib><creatorcontrib>Burian, P.</creatorcontrib><creatorcontrib>Čelko, T.</creatorcontrib><creatorcontrib>Garvey, D.</creatorcontrib><creatorcontrib>Gunthoti, K.</creatorcontrib><creatorcontrib>Infantes, F.G.</creatorcontrib><creatorcontrib>Mánek, P.</creatorcontrib><creatorcontrib>Manna, A.</creatorcontrib><creatorcontrib>Mráz, F.</creatorcontrib><creatorcontrib>Mucciola, R.</creatorcontrib><creatorcontrib>Pospíšil, S.</creatorcontrib><creatorcontrib>Sitarz, M.</creatorcontrib><creatorcontrib>Urban, O.</creatorcontrib><creatorcontrib>Vykydal, Z.</creatorcontrib><creatorcontrib>Wender, S.A.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolyanskiy, P.</au><au>Bacak, M.</au><au>Bergmann, B.</au><au>Broulím, P.</au><au>Burian, P.</au><au>Čelko, T.</au><au>Garvey, D.</au><au>Gunthoti, K.</au><au>Infantes, F.G.</au><au>Mánek, P.</au><au>Manna, A.</au><au>Mráz, F.</au><au>Mucciola, R.</au><au>Pospíšil, S.</au><au>Sitarz, M.</au><au>Urban, O.</au><au>Vykydal, Z.</au><au>Wender, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>C02016</spage><pages>C02016-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>We characterize a novel instrument designed for radiation field decomposition and particle
trajectory reconstruction for application in harsh radiation environments. The device consists of
two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These
detectors are interleaved with a set of neutron converters:
6
LiF for thermal neutrons,
polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton
filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence
technique together with pattern recognition allows improved separation of charged and neutral
particles, their discrimination against
γ
-rays and assessment of the overall directionality
of the fast neutron field. The instrument's charged particle tracking and separation capabilities
were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super
Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing
temporal and spatial coincidence assignment methodology, we determine the relative amount of
coincident detections as a function of the impact angle, present the device's impact angle
resolving power (both in coincidence and anticoicidence channels). The detector response to
neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron
Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured
tracks were assigned to their corresponding neutron energy by application of the time of flight
technique. We present the achieved neutron detection efficiency as a function of neutron kinetic
energy and demonstrate how the ratio of events found below the different converters can be used to
assess the hardness of the neutron spectrum. As an application, we determine the neutron content
within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with
protons of 160 MeV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/19/02/C02016</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-3077-3223</orcidid><orcidid>https://orcid.org/0000-0003-4306-0209</orcidid><orcidid>https://orcid.org/0000-0001-5424-9096</orcidid><orcidid>https://orcid.org/0000-0002-7858-5120</orcidid><orcidid>https://orcid.org/0000-0003-3038-7691</orcidid><orcidid>https://orcid.org/0000-0003-2609-6429</orcidid><orcidid>https://orcid.org/0000-0002-6959-544X</orcidid><orcidid>https://orcid.org/0000-0002-8076-5614</orcidid><orcidid>https://orcid.org/0000-0001-9501-0997</orcidid><orcidid>https://orcid.org/0000-0001-9869-3340</orcidid><orcidid>https://orcid.org/0000-0002-2446-5115</orcidid><orcidid>https://orcid.org/0000-0003-1605-7311</orcidid><orcidid>https://orcid.org/0000-0002-1122-1218</orcidid><orcidid>https://orcid.org/0009-0005-6454-5354</orcidid><orcidid>https://orcid.org/0000-0001-6907-7901</orcidid><orcidid>https://orcid.org/0000-0001-8811-8334</orcidid><orcidid>https://orcid.org/0000-0003-2329-0672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2024-02, Vol.19 (2), p.C02016 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_proquest_journals_2922548600 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Charged particles Decomposition Fast neutrons Gamma rays Neutron detectors (cold, thermal, fast neutrons) Neutrons Particle identification methods Particle tracking Particle tracking detectors (Solid-state detectors) Pattern recognition Pions Polyethylenes Protons Radiation Separation Thermal neutrons |
title | A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-layer%20Timepix3%20stack%20for%20improved%20charged%20particle%20tracking%20and%20radiation%20field%20decomposition&rft.jtitle=Journal%20of%20instrumentation&rft.au=Smolyanskiy,%20P.&rft.date=2024-02-01&rft.volume=19&rft.issue=2&rft.spage=C02016&rft.pages=C02016-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/19/02/C02016&rft_dat=%3Cproquest_iop_j%3E2922548600%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922548600&rft_id=info:pmid/&rfr_iscdi=true |