A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition

We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2024-02, Vol.19 (2), p.C02016
Hauptverfasser: Smolyanskiy, P., Bacak, M., Bergmann, B., Broulím, P., Burian, P., Čelko, T., Garvey, D., Gunthoti, K., Infantes, F.G., Mánek, P., Manna, A., Mráz, F., Mucciola, R., Pospíšil, S., Sitarz, M., Urban, O., Vykydal, Z., Wender, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page C02016
container_title Journal of instrumentation
container_volume 19
creator Smolyanskiy, P.
Bacak, M.
Bergmann, B.
Broulím, P.
Burian, P.
Čelko, T.
Garvey, D.
Gunthoti, K.
Infantes, F.G.
Mánek, P.
Manna, A.
Mráz, F.
Mucciola, R.
Pospíšil, S.
Sitarz, M.
Urban, O.
Vykydal, Z.
Wender, S.A.
description We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6 LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ -rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.
doi_str_mv 10.1088/1748-0221/19/02/C02016
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2922548600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922548600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4b88e19857f440cf3eb5536a027db8726a0a2424288569b68a461bc0d7b2a7363</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoXJOC5Nknz1eOy-AWCl_Uc0jRds7ZNTbrq_ntTKupN5vCGmffeDA-AS4yuMZIyx4LKDBGCc1zmiORrRBDmR2Dxszj-05-Csxh3CLGSUbQAZgXHD5-1-mAD3LjODu6zgHHU5hU2PkDXDcG_2xqaFx22CQcdRmdaC8eQOK7fQt3XMOja6dH5HjbOtjWsrfHd4KObZufgpNFttBffuATPtzeb9X32-HT3sF49ZqZgYsxoJaXFpWSioRSZprAVYwXXiIi6koKkThOaSkrGy4pLTTmuDKpFRbQoeLEEV7Nvevltb-Oodn4f-nRSkZIQRiVHKLH4zDLBxxhso4bgOh0OCiM1BaqmrNSUlcJlQjUHmoRkFjo__Dr_I_oC7XB3Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922548600</pqid></control><display><type>article</type><title>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Smolyanskiy, P. ; Bacak, M. ; Bergmann, B. ; Broulím, P. ; Burian, P. ; Čelko, T. ; Garvey, D. ; Gunthoti, K. ; Infantes, F.G. ; Mánek, P. ; Manna, A. ; Mráz, F. ; Mucciola, R. ; Pospíšil, S. ; Sitarz, M. ; Urban, O. ; Vykydal, Z. ; Wender, S.A.</creator><creatorcontrib>Smolyanskiy, P. ; Bacak, M. ; Bergmann, B. ; Broulím, P. ; Burian, P. ; Čelko, T. ; Garvey, D. ; Gunthoti, K. ; Infantes, F.G. ; Mánek, P. ; Manna, A. ; Mráz, F. ; Mucciola, R. ; Pospíšil, S. ; Sitarz, M. ; Urban, O. ; Vykydal, Z. ; Wender, S.A.</creatorcontrib><description>We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6 LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ -rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/19/02/C02016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Charged particles ; Decomposition ; Fast neutrons ; Gamma rays ; Neutron detectors (cold, thermal, fast neutrons) ; Neutrons ; Particle identification methods ; Particle tracking ; Particle tracking detectors (Solid-state detectors) ; Pattern recognition ; Pions ; Polyethylenes ; Protons ; Radiation ; Separation ; Thermal neutrons</subject><ispartof>Journal of instrumentation, 2024-02, Vol.19 (2), p.C02016</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-4b88e19857f440cf3eb5536a027db8726a0a2424288569b68a461bc0d7b2a7363</cites><orcidid>0009-0003-3077-3223 ; 0000-0003-4306-0209 ; 0000-0001-5424-9096 ; 0000-0002-7858-5120 ; 0000-0003-3038-7691 ; 0000-0003-2609-6429 ; 0000-0002-6959-544X ; 0000-0002-8076-5614 ; 0000-0001-9501-0997 ; 0000-0001-9869-3340 ; 0000-0002-2446-5115 ; 0000-0003-1605-7311 ; 0000-0002-1122-1218 ; 0009-0005-6454-5354 ; 0000-0001-6907-7901 ; 0000-0001-8811-8334 ; 0000-0003-2329-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/19/02/C02016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Smolyanskiy, P.</creatorcontrib><creatorcontrib>Bacak, M.</creatorcontrib><creatorcontrib>Bergmann, B.</creatorcontrib><creatorcontrib>Broulím, P.</creatorcontrib><creatorcontrib>Burian, P.</creatorcontrib><creatorcontrib>Čelko, T.</creatorcontrib><creatorcontrib>Garvey, D.</creatorcontrib><creatorcontrib>Gunthoti, K.</creatorcontrib><creatorcontrib>Infantes, F.G.</creatorcontrib><creatorcontrib>Mánek, P.</creatorcontrib><creatorcontrib>Manna, A.</creatorcontrib><creatorcontrib>Mráz, F.</creatorcontrib><creatorcontrib>Mucciola, R.</creatorcontrib><creatorcontrib>Pospíšil, S.</creatorcontrib><creatorcontrib>Sitarz, M.</creatorcontrib><creatorcontrib>Urban, O.</creatorcontrib><creatorcontrib>Vykydal, Z.</creatorcontrib><creatorcontrib>Wender, S.A.</creatorcontrib><title>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6 LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ -rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.</description><subject>Charged particles</subject><subject>Decomposition</subject><subject>Fast neutrons</subject><subject>Gamma rays</subject><subject>Neutron detectors (cold, thermal, fast neutrons)</subject><subject>Neutrons</subject><subject>Particle identification methods</subject><subject>Particle tracking</subject><subject>Particle tracking detectors (Solid-state detectors)</subject><subject>Pattern recognition</subject><subject>Pions</subject><subject>Polyethylenes</subject><subject>Protons</subject><subject>Radiation</subject><subject>Separation</subject><subject>Thermal neutrons</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNqFUE1LxDAQDaLguvoXJOC5Nknz1eOy-AWCl_Uc0jRds7ZNTbrq_ntTKupN5vCGmffeDA-AS4yuMZIyx4LKDBGCc1zmiORrRBDmR2Dxszj-05-Csxh3CLGSUbQAZgXHD5-1-mAD3LjODu6zgHHU5hU2PkDXDcG_2xqaFx22CQcdRmdaC8eQOK7fQt3XMOja6dH5HjbOtjWsrfHd4KObZufgpNFttBffuATPtzeb9X32-HT3sF49ZqZgYsxoJaXFpWSioRSZprAVYwXXiIi6koKkThOaSkrGy4pLTTmuDKpFRbQoeLEEV7Nvevltb-Oodn4f-nRSkZIQRiVHKLH4zDLBxxhso4bgOh0OCiM1BaqmrNSUlcJlQjUHmoRkFjo__Dr_I_oC7XB3Pg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Smolyanskiy, P.</creator><creator>Bacak, M.</creator><creator>Bergmann, B.</creator><creator>Broulím, P.</creator><creator>Burian, P.</creator><creator>Čelko, T.</creator><creator>Garvey, D.</creator><creator>Gunthoti, K.</creator><creator>Infantes, F.G.</creator><creator>Mánek, P.</creator><creator>Manna, A.</creator><creator>Mráz, F.</creator><creator>Mucciola, R.</creator><creator>Pospíšil, S.</creator><creator>Sitarz, M.</creator><creator>Urban, O.</creator><creator>Vykydal, Z.</creator><creator>Wender, S.A.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3077-3223</orcidid><orcidid>https://orcid.org/0000-0003-4306-0209</orcidid><orcidid>https://orcid.org/0000-0001-5424-9096</orcidid><orcidid>https://orcid.org/0000-0002-7858-5120</orcidid><orcidid>https://orcid.org/0000-0003-3038-7691</orcidid><orcidid>https://orcid.org/0000-0003-2609-6429</orcidid><orcidid>https://orcid.org/0000-0002-6959-544X</orcidid><orcidid>https://orcid.org/0000-0002-8076-5614</orcidid><orcidid>https://orcid.org/0000-0001-9501-0997</orcidid><orcidid>https://orcid.org/0000-0001-9869-3340</orcidid><orcidid>https://orcid.org/0000-0002-2446-5115</orcidid><orcidid>https://orcid.org/0000-0003-1605-7311</orcidid><orcidid>https://orcid.org/0000-0002-1122-1218</orcidid><orcidid>https://orcid.org/0009-0005-6454-5354</orcidid><orcidid>https://orcid.org/0000-0001-6907-7901</orcidid><orcidid>https://orcid.org/0000-0001-8811-8334</orcidid><orcidid>https://orcid.org/0000-0003-2329-0672</orcidid></search><sort><creationdate>20240201</creationdate><title>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</title><author>Smolyanskiy, P. ; Bacak, M. ; Bergmann, B. ; Broulím, P. ; Burian, P. ; Čelko, T. ; Garvey, D. ; Gunthoti, K. ; Infantes, F.G. ; Mánek, P. ; Manna, A. ; Mráz, F. ; Mucciola, R. ; Pospíšil, S. ; Sitarz, M. ; Urban, O. ; Vykydal, Z. ; Wender, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4b88e19857f440cf3eb5536a027db8726a0a2424288569b68a461bc0d7b2a7363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charged particles</topic><topic>Decomposition</topic><topic>Fast neutrons</topic><topic>Gamma rays</topic><topic>Neutron detectors (cold, thermal, fast neutrons)</topic><topic>Neutrons</topic><topic>Particle identification methods</topic><topic>Particle tracking</topic><topic>Particle tracking detectors (Solid-state detectors)</topic><topic>Pattern recognition</topic><topic>Pions</topic><topic>Polyethylenes</topic><topic>Protons</topic><topic>Radiation</topic><topic>Separation</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolyanskiy, P.</creatorcontrib><creatorcontrib>Bacak, M.</creatorcontrib><creatorcontrib>Bergmann, B.</creatorcontrib><creatorcontrib>Broulím, P.</creatorcontrib><creatorcontrib>Burian, P.</creatorcontrib><creatorcontrib>Čelko, T.</creatorcontrib><creatorcontrib>Garvey, D.</creatorcontrib><creatorcontrib>Gunthoti, K.</creatorcontrib><creatorcontrib>Infantes, F.G.</creatorcontrib><creatorcontrib>Mánek, P.</creatorcontrib><creatorcontrib>Manna, A.</creatorcontrib><creatorcontrib>Mráz, F.</creatorcontrib><creatorcontrib>Mucciola, R.</creatorcontrib><creatorcontrib>Pospíšil, S.</creatorcontrib><creatorcontrib>Sitarz, M.</creatorcontrib><creatorcontrib>Urban, O.</creatorcontrib><creatorcontrib>Vykydal, Z.</creatorcontrib><creatorcontrib>Wender, S.A.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolyanskiy, P.</au><au>Bacak, M.</au><au>Bergmann, B.</au><au>Broulím, P.</au><au>Burian, P.</au><au>Čelko, T.</au><au>Garvey, D.</au><au>Gunthoti, K.</au><au>Infantes, F.G.</au><au>Mánek, P.</au><au>Manna, A.</au><au>Mráz, F.</au><au>Mucciola, R.</au><au>Pospíšil, S.</au><au>Sitarz, M.</au><au>Urban, O.</au><au>Vykydal, Z.</au><au>Wender, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>C02016</spage><pages>C02016-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6 LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ -rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/19/02/C02016</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-3077-3223</orcidid><orcidid>https://orcid.org/0000-0003-4306-0209</orcidid><orcidid>https://orcid.org/0000-0001-5424-9096</orcidid><orcidid>https://orcid.org/0000-0002-7858-5120</orcidid><orcidid>https://orcid.org/0000-0003-3038-7691</orcidid><orcidid>https://orcid.org/0000-0003-2609-6429</orcidid><orcidid>https://orcid.org/0000-0002-6959-544X</orcidid><orcidid>https://orcid.org/0000-0002-8076-5614</orcidid><orcidid>https://orcid.org/0000-0001-9501-0997</orcidid><orcidid>https://orcid.org/0000-0001-9869-3340</orcidid><orcidid>https://orcid.org/0000-0002-2446-5115</orcidid><orcidid>https://orcid.org/0000-0003-1605-7311</orcidid><orcidid>https://orcid.org/0000-0002-1122-1218</orcidid><orcidid>https://orcid.org/0009-0005-6454-5354</orcidid><orcidid>https://orcid.org/0000-0001-6907-7901</orcidid><orcidid>https://orcid.org/0000-0001-8811-8334</orcidid><orcidid>https://orcid.org/0000-0003-2329-0672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2024-02, Vol.19 (2), p.C02016
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2922548600
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Charged particles
Decomposition
Fast neutrons
Gamma rays
Neutron detectors (cold, thermal, fast neutrons)
Neutrons
Particle identification methods
Particle tracking
Particle tracking detectors (Solid-state detectors)
Pattern recognition
Pions
Polyethylenes
Protons
Radiation
Separation
Thermal neutrons
title A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-layer%20Timepix3%20stack%20for%20improved%20charged%20particle%20tracking%20and%20radiation%20field%20decomposition&rft.jtitle=Journal%20of%20instrumentation&rft.au=Smolyanskiy,%20P.&rft.date=2024-02-01&rft.volume=19&rft.issue=2&rft.spage=C02016&rft.pages=C02016-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/19/02/C02016&rft_dat=%3Cproquest_iop_j%3E2922548600%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922548600&rft_id=info:pmid/&rfr_iscdi=true