Development of control charts to monitor image data using the contourlet transform method
In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an im...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2024-03, Vol.40 (2), p.876-898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 2 |
container_start_page | 876 |
container_title | Quality and reliability engineering international |
container_volume | 40 |
creator | khodadadi, Zahra Owlia, Mohammad Saleh Amiri, Amirhossein Fallahnezhad, Mohammad Saber |
description | In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study. |
doi_str_mv | 10.1002/qre.3441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922457702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922457702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2881-65a649c27f48747cb908145c7b483133359b4832465ca0e81f3a13d6b6dadbca3</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgCs4p-BECXrx05q1NcpQ5X2Agih48hTRNt4622ZJU2bc3W716ep7Dj-flD8A1RjOMELnbeTujjOETMMFIygwXVJyCCeJMZAJhfg4uQtgglLAUE_D1YL9t67ad7SN0NTSuj9610Ky1jwFGBzvXN9F52HR6ZWGlo4ZDaPoVjGt75G7wrY0wet2H2vkOdjauXXUJzmrdBnv1V6fg83HxMX_Olq9PL_P7ZWaIEDgrcl0waQivmeCMm1IigVlueMkExZTSXB46worcaGQFrqnGtCrKotJVaTSdgptx7ta73WBDVJt0UZ9WKiIJYTnniCR1OyrjXQje1mrr00d-rzBSh-BUCk4dgks0G-lP09r9v069vS-O_hePK28Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922457702</pqid></control><display><type>article</type><title>Development of control charts to monitor image data using the contourlet transform method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>khodadadi, Zahra ; Owlia, Mohammad Saleh ; Amiri, Amirhossein ; Fallahnezhad, Mohammad Saber</creator><creatorcontrib>khodadadi, Zahra ; Owlia, Mohammad Saleh ; Amiri, Amirhossein ; Fallahnezhad, Mohammad Saber</creatorcontrib><description>In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3441</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Anisotropy ; average run length ; contourlet transform ; Control charts ; feature extraction ; generalized likelihood ratio ; image data ; Image processing ; Image quality ; Likelihood ratio ; Monitoring ; Phase II ; Quality control ; statistical process monitoring ; Wavelet analysis</subject><ispartof>Quality and reliability engineering international, 2024-03, Vol.40 (2), p.876-898</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2881-65a649c27f48747cb908145c7b483133359b4832465ca0e81f3a13d6b6dadbca3</cites><orcidid>0000-0003-3343-2769 ; 0000-0002-6608-2446 ; 0000-0002-8158-2369 ; 0000-0002-2385-8910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>khodadadi, Zahra</creatorcontrib><creatorcontrib>Owlia, Mohammad Saleh</creatorcontrib><creatorcontrib>Amiri, Amirhossein</creatorcontrib><creatorcontrib>Fallahnezhad, Mohammad Saber</creatorcontrib><title>Development of control charts to monitor image data using the contourlet transform method</title><title>Quality and reliability engineering international</title><description>In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>average run length</subject><subject>contourlet transform</subject><subject>Control charts</subject><subject>feature extraction</subject><subject>generalized likelihood ratio</subject><subject>image data</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Likelihood ratio</subject><subject>Monitoring</subject><subject>Phase II</subject><subject>Quality control</subject><subject>statistical process monitoring</subject><subject>Wavelet analysis</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYB_AgCs4p-BECXrx05q1NcpQ5X2Agih48hTRNt4622ZJU2bc3W716ep7Dj-flD8A1RjOMELnbeTujjOETMMFIygwXVJyCCeJMZAJhfg4uQtgglLAUE_D1YL9t67ad7SN0NTSuj9610Ky1jwFGBzvXN9F52HR6ZWGlo4ZDaPoVjGt75G7wrY0wet2H2vkOdjauXXUJzmrdBnv1V6fg83HxMX_Olq9PL_P7ZWaIEDgrcl0waQivmeCMm1IigVlueMkExZTSXB46worcaGQFrqnGtCrKotJVaTSdgptx7ta73WBDVJt0UZ9WKiIJYTnniCR1OyrjXQje1mrr00d-rzBSh-BUCk4dgks0G-lP09r9v069vS-O_hePK28Q</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>khodadadi, Zahra</creator><creator>Owlia, Mohammad Saleh</creator><creator>Amiri, Amirhossein</creator><creator>Fallahnezhad, Mohammad Saber</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-3343-2769</orcidid><orcidid>https://orcid.org/0000-0002-6608-2446</orcidid><orcidid>https://orcid.org/0000-0002-8158-2369</orcidid><orcidid>https://orcid.org/0000-0002-2385-8910</orcidid></search><sort><creationdate>202403</creationdate><title>Development of control charts to monitor image data using the contourlet transform method</title><author>khodadadi, Zahra ; Owlia, Mohammad Saleh ; Amiri, Amirhossein ; Fallahnezhad, Mohammad Saber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2881-65a649c27f48747cb908145c7b483133359b4832465ca0e81f3a13d6b6dadbca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>average run length</topic><topic>contourlet transform</topic><topic>Control charts</topic><topic>feature extraction</topic><topic>generalized likelihood ratio</topic><topic>image data</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Likelihood ratio</topic><topic>Monitoring</topic><topic>Phase II</topic><topic>Quality control</topic><topic>statistical process monitoring</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>khodadadi, Zahra</creatorcontrib><creatorcontrib>Owlia, Mohammad Saleh</creatorcontrib><creatorcontrib>Amiri, Amirhossein</creatorcontrib><creatorcontrib>Fallahnezhad, Mohammad Saber</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>khodadadi, Zahra</au><au>Owlia, Mohammad Saleh</au><au>Amiri, Amirhossein</au><au>Fallahnezhad, Mohammad Saber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of control charts to monitor image data using the contourlet transform method</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-03</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><spage>876</spage><epage>898</epage><pages>876-898</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3441</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3343-2769</orcidid><orcidid>https://orcid.org/0000-0002-6608-2446</orcidid><orcidid>https://orcid.org/0000-0002-8158-2369</orcidid><orcidid>https://orcid.org/0000-0002-2385-8910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2024-03, Vol.40 (2), p.876-898 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2922457702 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Anisotropy average run length contourlet transform Control charts feature extraction generalized likelihood ratio image data Image processing Image quality Likelihood ratio Monitoring Phase II Quality control statistical process monitoring Wavelet analysis |
title | Development of control charts to monitor image data using the contourlet transform method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20control%20charts%20to%20monitor%20image%20data%20using%20the%20contourlet%20transform%20method&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=khodadadi,%20Zahra&rft.date=2024-03&rft.volume=40&rft.issue=2&rft.spage=876&rft.epage=898&rft.pages=876-898&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3441&rft_dat=%3Cproquest_cross%3E2922457702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922457702&rft_id=info:pmid/&rfr_iscdi=true |