Development of control charts to monitor image data using the contourlet transform method

In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2024-03, Vol.40 (2), p.876-898
Hauptverfasser: khodadadi, Zahra, Owlia, Mohammad Saleh, Amiri, Amirhossein, Fallahnezhad, Mohammad Saber
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 2
container_start_page 876
container_title Quality and reliability engineering international
container_volume 40
creator khodadadi, Zahra
Owlia, Mohammad Saleh
Amiri, Amirhossein
Fallahnezhad, Mohammad Saber
description In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.
doi_str_mv 10.1002/qre.3441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922457702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922457702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2881-65a649c27f48747cb908145c7b483133359b4832465ca0e81f3a13d6b6dadbca3</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgCs4p-BECXrx05q1NcpQ5X2Agih48hTRNt4622ZJU2bc3W716ep7Dj-flD8A1RjOMELnbeTujjOETMMFIygwXVJyCCeJMZAJhfg4uQtgglLAUE_D1YL9t67ad7SN0NTSuj9610Ky1jwFGBzvXN9F52HR6ZWGlo4ZDaPoVjGt75G7wrY0wet2H2vkOdjauXXUJzmrdBnv1V6fg83HxMX_Olq9PL_P7ZWaIEDgrcl0waQivmeCMm1IigVlueMkExZTSXB46worcaGQFrqnGtCrKotJVaTSdgptx7ta73WBDVJt0UZ9WKiIJYTnniCR1OyrjXQje1mrr00d-rzBSh-BUCk4dgks0G-lP09r9v069vS-O_hePK28Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922457702</pqid></control><display><type>article</type><title>Development of control charts to monitor image data using the contourlet transform method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>khodadadi, Zahra ; Owlia, Mohammad Saleh ; Amiri, Amirhossein ; Fallahnezhad, Mohammad Saber</creator><creatorcontrib>khodadadi, Zahra ; Owlia, Mohammad Saleh ; Amiri, Amirhossein ; Fallahnezhad, Mohammad Saber</creatorcontrib><description>In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3441</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Anisotropy ; average run length ; contourlet transform ; Control charts ; feature extraction ; generalized likelihood ratio ; image data ; Image processing ; Image quality ; Likelihood ratio ; Monitoring ; Phase II ; Quality control ; statistical process monitoring ; Wavelet analysis</subject><ispartof>Quality and reliability engineering international, 2024-03, Vol.40 (2), p.876-898</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2881-65a649c27f48747cb908145c7b483133359b4832465ca0e81f3a13d6b6dadbca3</cites><orcidid>0000-0003-3343-2769 ; 0000-0002-6608-2446 ; 0000-0002-8158-2369 ; 0000-0002-2385-8910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>khodadadi, Zahra</creatorcontrib><creatorcontrib>Owlia, Mohammad Saleh</creatorcontrib><creatorcontrib>Amiri, Amirhossein</creatorcontrib><creatorcontrib>Fallahnezhad, Mohammad Saber</creatorcontrib><title>Development of control charts to monitor image data using the contourlet transform method</title><title>Quality and reliability engineering international</title><description>In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>average run length</subject><subject>contourlet transform</subject><subject>Control charts</subject><subject>feature extraction</subject><subject>generalized likelihood ratio</subject><subject>image data</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Likelihood ratio</subject><subject>Monitoring</subject><subject>Phase II</subject><subject>Quality control</subject><subject>statistical process monitoring</subject><subject>Wavelet analysis</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYB_AgCs4p-BECXrx05q1NcpQ5X2Agih48hTRNt4622ZJU2bc3W716ep7Dj-flD8A1RjOMELnbeTujjOETMMFIygwXVJyCCeJMZAJhfg4uQtgglLAUE_D1YL9t67ad7SN0NTSuj9610Ky1jwFGBzvXN9F52HR6ZWGlo4ZDaPoVjGt75G7wrY0wet2H2vkOdjauXXUJzmrdBnv1V6fg83HxMX_Olq9PL_P7ZWaIEDgrcl0waQivmeCMm1IigVlueMkExZTSXB46worcaGQFrqnGtCrKotJVaTSdgptx7ta73WBDVJt0UZ9WKiIJYTnniCR1OyrjXQje1mrr00d-rzBSh-BUCk4dgks0G-lP09r9v069vS-O_hePK28Q</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>khodadadi, Zahra</creator><creator>Owlia, Mohammad Saleh</creator><creator>Amiri, Amirhossein</creator><creator>Fallahnezhad, Mohammad Saber</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-3343-2769</orcidid><orcidid>https://orcid.org/0000-0002-6608-2446</orcidid><orcidid>https://orcid.org/0000-0002-8158-2369</orcidid><orcidid>https://orcid.org/0000-0002-2385-8910</orcidid></search><sort><creationdate>202403</creationdate><title>Development of control charts to monitor image data using the contourlet transform method</title><author>khodadadi, Zahra ; Owlia, Mohammad Saleh ; Amiri, Amirhossein ; Fallahnezhad, Mohammad Saber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2881-65a649c27f48747cb908145c7b483133359b4832465ca0e81f3a13d6b6dadbca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>average run length</topic><topic>contourlet transform</topic><topic>Control charts</topic><topic>feature extraction</topic><topic>generalized likelihood ratio</topic><topic>image data</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Likelihood ratio</topic><topic>Monitoring</topic><topic>Phase II</topic><topic>Quality control</topic><topic>statistical process monitoring</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>khodadadi, Zahra</creatorcontrib><creatorcontrib>Owlia, Mohammad Saleh</creatorcontrib><creatorcontrib>Amiri, Amirhossein</creatorcontrib><creatorcontrib>Fallahnezhad, Mohammad Saber</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>khodadadi, Zahra</au><au>Owlia, Mohammad Saleh</au><au>Amiri, Amirhossein</au><au>Fallahnezhad, Mohammad Saber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of control charts to monitor image data using the contourlet transform method</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-03</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><spage>876</spage><epage>898</epage><pages>876-898</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>In recent years, researchers and practitioners have been exploring new methods for quality control, including image processing. The effective use of high‐volume image data can significantly improve the monitoring of production and service systems in terms of speed, accuracy, and cost. Adopting an image‐based approach is better than relying on operator‐based solutions, and it offers new perspectives for process monitoring. Image processing can involve extracting features to identify, classify, detect, and cluster. Although there are several transformations to extract features from images, the Fourier method cannot consider the concurrency of frequency and time data, and the wavelet method only considers two specific directions. In multidimensional transforms, the optimal method can provide more information using fewer coefficients. The contourlet transform has advantages such as multiresolution, localization, critical sampling, directionality, and anisotropy. This research investigates the advantages of applying the contourlet transform to images and using data in a generalized likelihood ratio control chart. The results show that this method is more accurate than others because it can examine various directions in images. The proposed methodology algorithm is also presented in this study.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3441</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3343-2769</orcidid><orcidid>https://orcid.org/0000-0002-6608-2446</orcidid><orcidid>https://orcid.org/0000-0002-8158-2369</orcidid><orcidid>https://orcid.org/0000-0002-2385-8910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2024-03, Vol.40 (2), p.876-898
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2922457702
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Anisotropy
average run length
contourlet transform
Control charts
feature extraction
generalized likelihood ratio
image data
Image processing
Image quality
Likelihood ratio
Monitoring
Phase II
Quality control
statistical process monitoring
Wavelet analysis
title Development of control charts to monitor image data using the contourlet transform method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20control%20charts%20to%20monitor%20image%20data%20using%20the%20contourlet%20transform%20method&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=khodadadi,%20Zahra&rft.date=2024-03&rft.volume=40&rft.issue=2&rft.spage=876&rft.epage=898&rft.pages=876-898&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3441&rft_dat=%3Cproquest_cross%3E2922457702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922457702&rft_id=info:pmid/&rfr_iscdi=true