Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application

In this study, the influence of surfactant on the specific capacitance of nickel oxide nanoparticles (NiO NPs) for supercapacitor applications is studied. We synthesized nickel oxide (NiO) and nickel oxide with sodium dodecyl sulphate (NiO/SDS) NPs using solution combustion synthesis SDS is signific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2024-02, Vol.47 (1), p.30, Article 30
Hauptverfasser: John Steven Wesley, K, Shireesha, K, Divya, V, Rakesh, D, Shilpa Chakra, C H, Sree Chandana, K, Sai Vamsi Ganesh Reddy, S, Deepti, K, Bala Narsaiah, T, Sadhana, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 30
container_title Bulletin of materials science
container_volume 47
creator John Steven Wesley, K
Shireesha, K
Divya, V
Rakesh, D
Shilpa Chakra, C H
Sree Chandana, K
Sai Vamsi Ganesh Reddy, S
Deepti, K
Bala Narsaiah, T
Sadhana, K
description In this study, the influence of surfactant on the specific capacitance of nickel oxide nanoparticles (NiO NPs) for supercapacitor applications is studied. We synthesized nickel oxide (NiO) and nickel oxide with sodium dodecyl sulphate (NiO/SDS) NPs using solution combustion synthesis SDS is significant in synthesizing nanomaterials that allow control over particle size, shape and stability. They can enhance the performance of nanoscale materials as energy storage materials by improving their electrochemical activity and charge transfer kinetics. The synthesized material’s performance was further characterized using X-ray diffraction (XRD), UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive spectroscopy and transmission electron microscopy. The typical crystalline sizes of NiO and NiO/SDS nanomaterials were 28 and 22 nm, respectively. XRD analysis reveals that the structure of NiO is FCC. In addition, the electrochemical performance of the active material was investigated in the electrolyte 6M with potassium hydroxide. Accordingly, specific capacitances of NiO and NiO/SDS are observed as 955 and 1024 F g –1 at a 2 mV s –1 scan rate. It was established that NiO/SDS NPs offer considerably superior electrochemical performance due to the surfactant SDS’s inclusion in contrast to NiO NPs.
doi_str_mv 10.1007/s12034-023-03101-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922322876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922322876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9a2696d4799202270a2b0a0b6bacb39330ce33a24b8d10266593a3c94b9f13d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gks2aboxT_FApe9Byy2aykbpOYbEG_valb0JOneTP83ht4hFwyuGYAzU1mHLCmwJECMmAUj8gMZIO0EUIe_9Gn5CznDQCTdc1mxK22UZuxCn2Vd6kvUvuy-SpHa1zvTGV0AVw5G7unvDPvdqjCp-ts5bUPUafRmcHmqg-phESbDpay6hgHZ_Togj8nJ70esr04zDl5fbh_WT7R9fPjanm3pgaZHGknNRdSdHUjJQfOG9C8BQ2taLVpUSKCsYia1-2iY8CFuJWo0ci6lT3DDufkasqNKXzsbB7VJuySLy8Vl5wj54tGFIpPlEkh52R7FZPb6vSlGKh9pWqqVJVK1U-lCosJJ1MusH-z6Tf6H9c3LM16UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922322876</pqid></control><display><type>article</type><title>Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application</title><source>Indian Academy of Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><creator>John Steven Wesley, K ; Shireesha, K ; Divya, V ; Rakesh, D ; Shilpa Chakra, C H ; Sree Chandana, K ; Sai Vamsi Ganesh Reddy, S ; Deepti, K ; Bala Narsaiah, T ; Sadhana, K</creator><creatorcontrib>John Steven Wesley, K ; Shireesha, K ; Divya, V ; Rakesh, D ; Shilpa Chakra, C H ; Sree Chandana, K ; Sai Vamsi Ganesh Reddy, S ; Deepti, K ; Bala Narsaiah, T ; Sadhana, K</creatorcontrib><description>In this study, the influence of surfactant on the specific capacitance of nickel oxide nanoparticles (NiO NPs) for supercapacitor applications is studied. We synthesized nickel oxide (NiO) and nickel oxide with sodium dodecyl sulphate (NiO/SDS) NPs using solution combustion synthesis SDS is significant in synthesizing nanomaterials that allow control over particle size, shape and stability. They can enhance the performance of nanoscale materials as energy storage materials by improving their electrochemical activity and charge transfer kinetics. The synthesized material’s performance was further characterized using X-ray diffraction (XRD), UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive spectroscopy and transmission electron microscopy. The typical crystalline sizes of NiO and NiO/SDS nanomaterials were 28 and 22 nm, respectively. XRD analysis reveals that the structure of NiO is FCC. In addition, the electrochemical performance of the active material was investigated in the electrolyte 6M with potassium hydroxide. Accordingly, specific capacitances of NiO and NiO/SDS are observed as 955 and 1024 F g –1 at a 2 mV s –1 scan rate. It was established that NiO/SDS NPs offer considerably superior electrochemical performance due to the surfactant SDS’s inclusion in contrast to NiO NPs.</description><identifier>ISSN: 0973-7669</identifier><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-023-03101-3</identifier><language>eng</language><publisher>Bangalore: Indian Academy of Sciences</publisher><subject>Acids ; Capacitance ; Charge transfer ; Chemistry and Materials Science ; Combustion synthesis ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electron microscopy ; Electrons ; Energy storage ; Engineering ; Fourier transforms ; Infrared spectroscopy ; Materials Science ; Metal oxides ; Morphology ; Nanomaterials ; Nanoparticles ; Nickel ; Nickel oxides ; Nitrates ; Potassium hydroxides ; Sodium dodecyl sulfate ; Spectrum analysis ; Supercapacitors ; Surfactants ; X-ray diffraction</subject><ispartof>Bulletin of materials science, 2024-02, Vol.47 (1), p.30, Article 30</ispartof><rights>Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9a2696d4799202270a2b0a0b6bacb39330ce33a24b8d10266593a3c94b9f13d3</citedby><cites>FETCH-LOGICAL-c319t-d9a2696d4799202270a2b0a0b6bacb39330ce33a24b8d10266593a3c94b9f13d3</cites><orcidid>0000-0001-9556-712X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12034-023-03101-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12034-023-03101-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>John Steven Wesley, K</creatorcontrib><creatorcontrib>Shireesha, K</creatorcontrib><creatorcontrib>Divya, V</creatorcontrib><creatorcontrib>Rakesh, D</creatorcontrib><creatorcontrib>Shilpa Chakra, C H</creatorcontrib><creatorcontrib>Sree Chandana, K</creatorcontrib><creatorcontrib>Sai Vamsi Ganesh Reddy, S</creatorcontrib><creatorcontrib>Deepti, K</creatorcontrib><creatorcontrib>Bala Narsaiah, T</creatorcontrib><creatorcontrib>Sadhana, K</creatorcontrib><title>Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>In this study, the influence of surfactant on the specific capacitance of nickel oxide nanoparticles (NiO NPs) for supercapacitor applications is studied. We synthesized nickel oxide (NiO) and nickel oxide with sodium dodecyl sulphate (NiO/SDS) NPs using solution combustion synthesis SDS is significant in synthesizing nanomaterials that allow control over particle size, shape and stability. They can enhance the performance of nanoscale materials as energy storage materials by improving their electrochemical activity and charge transfer kinetics. The synthesized material’s performance was further characterized using X-ray diffraction (XRD), UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive spectroscopy and transmission electron microscopy. The typical crystalline sizes of NiO and NiO/SDS nanomaterials were 28 and 22 nm, respectively. XRD analysis reveals that the structure of NiO is FCC. In addition, the electrochemical performance of the active material was investigated in the electrolyte 6M with potassium hydroxide. Accordingly, specific capacitances of NiO and NiO/SDS are observed as 955 and 1024 F g –1 at a 2 mV s –1 scan rate. It was established that NiO/SDS NPs offer considerably superior electrochemical performance due to the surfactant SDS’s inclusion in contrast to NiO NPs.</description><subject>Acids</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Combustion synthesis</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Nickel oxides</subject><subject>Nitrates</subject><subject>Potassium hydroxides</subject><subject>Sodium dodecyl sulfate</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><subject>Surfactants</subject><subject>X-ray diffraction</subject><issn>0973-7669</issn><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gks2aboxT_FApe9Byy2aykbpOYbEG_valb0JOneTP83ht4hFwyuGYAzU1mHLCmwJECMmAUj8gMZIO0EUIe_9Gn5CznDQCTdc1mxK22UZuxCn2Vd6kvUvuy-SpHa1zvTGV0AVw5G7unvDPvdqjCp-ts5bUPUafRmcHmqg-phESbDpay6hgHZ_Togj8nJ70esr04zDl5fbh_WT7R9fPjanm3pgaZHGknNRdSdHUjJQfOG9C8BQ2taLVpUSKCsYia1-2iY8CFuJWo0ci6lT3DDufkasqNKXzsbB7VJuySLy8Vl5wj54tGFIpPlEkh52R7FZPb6vSlGKh9pWqqVJVK1U-lCosJJ1MusH-z6Tf6H9c3LM16UA</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>John Steven Wesley, K</creator><creator>Shireesha, K</creator><creator>Divya, V</creator><creator>Rakesh, D</creator><creator>Shilpa Chakra, C H</creator><creator>Sree Chandana, K</creator><creator>Sai Vamsi Ganesh Reddy, S</creator><creator>Deepti, K</creator><creator>Bala Narsaiah, T</creator><creator>Sadhana, K</creator><general>Indian Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9556-712X</orcidid></search><sort><creationdate>20240205</creationdate><title>Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application</title><author>John Steven Wesley, K ; Shireesha, K ; Divya, V ; Rakesh, D ; Shilpa Chakra, C H ; Sree Chandana, K ; Sai Vamsi Ganesh Reddy, S ; Deepti, K ; Bala Narsaiah, T ; Sadhana, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9a2696d4799202270a2b0a0b6bacb39330ce33a24b8d10266593a3c94b9f13d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Combustion synthesis</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Nickel oxides</topic><topic>Nitrates</topic><topic>Potassium hydroxides</topic><topic>Sodium dodecyl sulfate</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><topic>Surfactants</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John Steven Wesley, K</creatorcontrib><creatorcontrib>Shireesha, K</creatorcontrib><creatorcontrib>Divya, V</creatorcontrib><creatorcontrib>Rakesh, D</creatorcontrib><creatorcontrib>Shilpa Chakra, C H</creatorcontrib><creatorcontrib>Sree Chandana, K</creatorcontrib><creatorcontrib>Sai Vamsi Ganesh Reddy, S</creatorcontrib><creatorcontrib>Deepti, K</creatorcontrib><creatorcontrib>Bala Narsaiah, T</creatorcontrib><creatorcontrib>Sadhana, K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John Steven Wesley, K</au><au>Shireesha, K</au><au>Divya, V</au><au>Rakesh, D</au><au>Shilpa Chakra, C H</au><au>Sree Chandana, K</au><au>Sai Vamsi Ganesh Reddy, S</au><au>Deepti, K</au><au>Bala Narsaiah, T</au><au>Sadhana, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2024-02-05</date><risdate>2024</risdate><volume>47</volume><issue>1</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>0973-7669</issn><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>In this study, the influence of surfactant on the specific capacitance of nickel oxide nanoparticles (NiO NPs) for supercapacitor applications is studied. We synthesized nickel oxide (NiO) and nickel oxide with sodium dodecyl sulphate (NiO/SDS) NPs using solution combustion synthesis SDS is significant in synthesizing nanomaterials that allow control over particle size, shape and stability. They can enhance the performance of nanoscale materials as energy storage materials by improving their electrochemical activity and charge transfer kinetics. The synthesized material’s performance was further characterized using X-ray diffraction (XRD), UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive spectroscopy and transmission electron microscopy. The typical crystalline sizes of NiO and NiO/SDS nanomaterials were 28 and 22 nm, respectively. XRD analysis reveals that the structure of NiO is FCC. In addition, the electrochemical performance of the active material was investigated in the electrolyte 6M with potassium hydroxide. Accordingly, specific capacitances of NiO and NiO/SDS are observed as 955 and 1024 F g –1 at a 2 mV s –1 scan rate. It was established that NiO/SDS NPs offer considerably superior electrochemical performance due to the surfactant SDS’s inclusion in contrast to NiO NPs.</abstract><cop>Bangalore</cop><pub>Indian Academy of Sciences</pub><doi>10.1007/s12034-023-03101-3</doi><orcidid>https://orcid.org/0000-0001-9556-712X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-7669
ispartof Bulletin of materials science, 2024-02, Vol.47 (1), p.30, Article 30
issn 0973-7669
0250-4707
0973-7669
language eng
recordid cdi_proquest_journals_2922322876
source Indian Academy of Sciences; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings
subjects Acids
Capacitance
Charge transfer
Chemistry and Materials Science
Combustion synthesis
Electrochemical analysis
Electrodes
Electrolytes
Electron microscopy
Electrons
Energy storage
Engineering
Fourier transforms
Infrared spectroscopy
Materials Science
Metal oxides
Morphology
Nanomaterials
Nanoparticles
Nickel
Nickel oxides
Nitrates
Potassium hydroxides
Sodium dodecyl sulfate
Spectrum analysis
Supercapacitors
Surfactants
X-ray diffraction
title Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20surfactant%20on%20specific%20capacitance%20of%20nickel%20oxide%20nanoparticles%20for%20supercapacitor%20application&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=John%20Steven%20Wesley,%20K&rft.date=2024-02-05&rft.volume=47&rft.issue=1&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=0973-7669&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-023-03101-3&rft_dat=%3Cproquest_cross%3E2922322876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922322876&rft_id=info:pmid/&rfr_iscdi=true